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Introduction 
Besides steam methane reforming with carbon capture and storage, an alternative approach for low-carbon H2 production is non-oxidative CH4 
pyrolysis using a molten metal bubble column reactor (MMBCR) (Catalan and Rezaei, 2020; Ngo et al., 2023). Separable highly economical solid 
carbon and H2 are obtained via CH4 pyrolysis in a MMBCR without CO2 emissions (Upham et al., 2017). However, important factors of MMBCR 
such as hydrodynamics, bubble size distribution, bubble velocity, and gas-liquid specific interfacial area are difficult to determine by experiments. 
The computational fluid dynamics volume-of-fluid (VOF-CFD) model has been used for characterizing bubbles in conventional chemical processes 
(Nguyen et al., 2022) as well as MMBCR (Ngo et al., 2023). The combination of the VOF-CFD model and a bubble detection algorithm provided the 
bubble characteristics in MMBCRs under an incompressible and isothermal condition. 
This study aims to develop a non-isothermal ideal-gas VOF-CFD model coupled with a large-eddy simulation (LES) turbulence model for CH4 
pyrolysis in a Sn-MMBCR. The bubble detection algorithm (Ngo et al., 2023) was applied for calculating the bubble size distribution, bubble 
velocity, and specific interfacial area. The effect of ideal gas density on hydrodynamics and bubble characteristics is investigated.

VOF-CFD model
The transient VOF-CFD model includes a single set of continuity and Navier-
Stokes momentum equations weighted by the gas volume fraction. The LES 
turbulence model with wall adapting local eddy (WALE) sub-grid scale model 
was applied to the gas phase (CH4, H2) while the surface tension force and wall 
adhesion force models were considered in the liquid phase (molten Sn) (Ngo 
et al., 2023; Nguyen et al., 2022). A summary of the VOF-CFD model is shown in 
Fig. 1.

The VOF-CFD model geometry and meshing are shown in Fig. 2. A lab-scale 
MMBCR geometry (H = 350 mm, D = 36.7 mm) (Ngo et al., 2023) was used. The 
mesh number of around 1.8 million cells (mean cell size = 0.7 mm) was suitable to 
capture more than 80% of volume-averaged turbulence kinetic energy of direct 
numerical simulation (DNS).

Fig. 1. VOF-CFD model description

Fig. 2. (a) Geometry and (b) meshing for VOF-CFD model.

Methane decomposition in a molten-metal bubble column reactor using VOF-CFD 
model: Hydrodynamics and bubble determination

Son Ich Ngoa, Bang Thanh Lea, Hanh T.H. Buia, Mazhar Alia, Young-Il Lima 
aCenter of Sustainable Process Engineering (CoSPE), Department of Chemical Engineering, Hankyong National University, 
Gyeonggi-do, Anseong-si, Jungang-ro 327, 17579 Korea

Abstract: Molten-metal bubble column reactors (MMBCR) have been used for cleaner H2 production processes from 
CH4 pyrolysis. A volume of fluid computational fluid dynamics (VOF-CFD) model coupled with a large eddy simulation (LES) 
turbulence model was employed to simulate the hydrodynamics of molten-Sn/CH4/H2 system at 900 oC and bubbling regime. 
The surface tension force and wall adhesion force were implemented to capture the bubble shape and size of MMBCR. An ideal 
gas density was applied for the gas mixture. The reactor pressure drop was about 0.21 bar. A minor effect of ideal gas density on 
the hydrodynamics was found compared with constant gas density in a previous study (Ngo et al., 2023). 
Keywords: Molten-metal bubble column reactor, Hydrogen production, Computational fluid dynamics, Volume of fluid, Gas-
liquid interfacial area.
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Results and discussions
Contours of pressure, liquid velocity, flow streamline, gas volume fraction, bubble shapes, and gas density are depicted in Fig. 3. The reactor 
pressure drop is approximately 0.21 bar. The liquid velocity surrounding bubbles is significantly promoted. The bubble shape varies from sphere 
to ellipsoidal cap according to their surrounding liquid velocity. The mean gas density showed a similar value to (Ngo et al., 2023). A minor effect 
of ideal gas density on hydrodynamics was observed.

Fig. 3. Contours of (a) pressure, (b) liquid 
velocity, and (c) gas volume fraction.

Conclusions
A computational fluid dynamics volume-of-fluid (VOF-CFD) coupled with a large eddy simulation (LES) turbulence model was developed for a 
molten-metal bubble column reactor (MMBCR) to produce H2 from non-oxidative CH4 pyrolysis.  Hydrodynamics and bubble characteristics such 
as bubble shape and size were well captured by the VOF-CFD model. A minor effect of ideal gas density on hydrodynamics was observed. 
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Introduction 
Many problems in process design and operation result in nonconvex nonlinear programs (NLPs). Guaranteeing optimal solution for such problems 
requires the use of deterministic global optimization methods. However, the latter are computationally expensive, and many problems of practical 
interest are still intractable. One way to accelerate global optimization is to make use of reduced-space formulations, which exploit equality 
constraints to eliminate variables from the optimization problem (Mitsos et al., 2009). These reformulations have been shown to enable drastic 
reductions in computational time for problems with certain special structure such as difference equations or discretized differential equations 
(Mitsos et al., 2009), flowsheet optimization (Byrne & Bogle, 2000; Bongartz & Mitsos, 2017), and machine-learning surrogates (Schweidtmann 
& Mitsos, 2019). So far, however, the reformulation needs to be implemented manually by the modeler, which is a major obstacle for broader 
application of the approach. In this work, we aim at automating the reformulation to reduced space through explicit elimination of variables for 
more general NLPs.

Method
We consider NLPs of the formWe consider NLPs of the form
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f (xrem, ĥel(xrem))
s . t . ~hrem(xrem, ĥel(xrem)) = 0
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xrem

min
xrem

f (xrem, ĥel(xrem))
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xrem

min
xrem

f (xrem, ĥel(xrem))
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The elimination with a factorable function bears strong similarities with tearing of nonlinear equation systems, for which there is a large body of 
literature – see Baharev et al. (2016) for a recent survey. Building on these methods, we propose a four-step approach:
1.  Identify which equality constraints can be solved analytically for which variables.
2.  Determine the order to process the equality constraints to minimize the number of remaining variables based on the method of Hernandez & 

Sargent (1979).
3. Select which variables to eliminate through  reordering the incidence matrix to bordered lower-triangular form.
4.  Rearrange the optimization problem accordingly, and introduce new (possibly nonlinear) inequality constraints to account for the variable 

bounds of the eliminated variables 
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Automatic reformulation of nonlinear programs to reduced space for global 
optimization

Dominik Bongartza,b,c, Constantinos C. Pantelidesb, Benoît Chachuatb 
a Department of Chemical Engineering, KU Leuven, Belgium 
b Sargent Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, United 
Kingdom 
c Process Systems Engineering (AVT.SVT), RWTH Aachen University, Germany

Abstract: Reduced-space formulations have been proposed as a way of accelerating global optimization of nonconvex 
nonlinear programs. In these formulations, variables are eliminated from the problem using equality constraints. However, 
existing approaches mostly rely on manual reformulation. In this contribution, we introduce an automated approach to reduced-
space reformulation. The approach builds on methods for tearing of nonlinear equation systems. It involves analyzing the 
computational graph of the problem regarding solvability of individual constraints, as well as analyzing the sparsity pattern of 
the constraints to identify in which order to evaluate equalities to eliminate variables. We demonstrate the approach on a number 
of case studies to evaluate its performance and discuss its benefits and limitations.
Keywords: Global optimization, Tearing, Sparsity.
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Implementation & Case Studies
The method is implemented in the open-source optimizer MAiNGO (Bongartz et al., 2018) based on the library MC++ (Chachuat et al., 2015). For 
Step 1, a new arithmetic is developed that evaluates the graph representation of the problem in MC++ to collect information about the occurrence 
of variables, and identifies which variables can be solved for analytically. This involves identifying whether a variable occurs only once in a given 
constraint and whether all intrinsic functions it occurs in are invertible. For Step 2, a greedy heuristic is favored due to the excessive computational 
demand of exact methods (Baharev et al., 2016). Step 3 performs a lexicographic selection for simplicity, since for a given evaluation order this 
selection does not impact the number of remaining variables. In Step 4, the graph is rearranged to yield the new problem by recursively replacing 
the variables with their defining expressions derived from the equality constraints. In this proof-of-concept implementation, Steps 1 and 4 are 
limited to eliminating variables that occur linearly in the corresponding constraint used for the elimination, but could potentially participate 
nonlinearly in other constraints or in the objective function.
The method is demonstrated on case studies taken from previous work on reduced-space formulations (in which these were derived manually), 
including flowsheet optimization (Bongartz & Mitsos, 2017) and problems with artificial neural networks (Schweidtmann & Mitsos, 2019),  as 
well as problems from common benchmark libraries. The computational effort of solving the automatically constructed version of Problem (2) is 
compared to that of solving the original Problem (1) as well as solving variants of Problem (2) derived manually based on problem insight.

Conclusion & Outlook
A method automatic reformulation of NLPs into reduced space is presented with the aim of accelerating global optimization of a wide class 
of problems by exploiting the sparsity patterns of equalities and variables. While the current implementation demonstrates the workflow and 
tractability of the approach, it is still limited in the type of problem structures it is applicable to. Furthermore, alternative methods for selecting 
which variables to eliminate could help better balance problem size versus tightness of relaxations and allow elimination of variables beyond the 
single-variable-single-equation approach of tearing methods (Hernandez & Sargent, 1979).
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Introduction 
Enzymatic reactions are promising alternatives to complex chemical syntheses or microbial bioreactors, as they use milder reaction conditions or 
allow for systematic optimization of selectivity and yield. An enzymatic cascade combines two or more enzyme-catalyzed steps without isolating 
the intermediates. A lot of research currently aims at the co-immobilization of several enzymes of a cascade onto porous particles. This approach 
promises improved enzyme stability, facilitated catalyst separation, and, not least, faster kinetics through spatial clustering of different enzymes 
inside pores (Arana-Peña et al., 2021; Bié et al., 2022). A series of exciting questions arose and remain unsolved: When is it advantageous to co-
immobilize different enzymes inside one pore compared to immobilizing them in separate pores/particles? How significant is this advantage? 
What is the optimal spatial distribution of the various enzymes inside the pores? Experimental studies are cumbersome and require enormous 
effort. Theoretical approaches that could guide experiments and improve understanding are yet missing. In the present work, we go the first 
steps toward such a theory. Inspired by classical approaches from chemical catalysis, we derive a quasi-steady-state, reaction-diffusion model for 
the porous particles and embed it into the material balances of a batch reactor with dispersed particles or a tubular reactor with a fixed bed. The 
model is flexible and computationally inexpensive, enabling us to evaluate and compare the performance of different immobilization strategies. 
E. g., we can compare the co-immobilization of two enzymes inside one pore vs. the separated immobilization in different pores. On the one 
hand, the developed theory provides a flexible model framework for experimental results for the kinetics of co-immobilized enzymatic cascades. 
On the other hand, the present work identifies general limitations of co-immobilized enzymes and guidelines for optimal spatial distribution. 
These general results include the maximum quantitive benefits of co-immobilization over separated immobilization as a function of reaction rate 
constants and diffusivities. 

Methodology
We study dynamic, reaction processes in a batch reactor. A two-step enzymatic cascade takes place in the batch reactor, catalyzed by two enzymes 
immobilized inside the pores of porous particles. The model consists of dynamic material balances for the species in the batch reactor and material 
balances for the pores. The reaction macro kinetics are derived from the material balances around the pores by applying Fick’s law at the beginning 
of the pores, following the ideas of Thiele (Thiele, 1934). Either Michaelis-Menten or first-order kinetics are used for the micro kinetic expressions. 
Several parameters appear in the model that can be fit to experiment or derived from literature. Parametric studies are applied to derive guidelines 
or general conclusions.  The model equations are solved either computationally or when possible analytically to derive solutions for the macro 
kinetics and time profiles in the reactor. 
We use the model to determine which spatial immobilization strategy (SIS), is better, between four options for a given system with known 
parameter values. The options are: single immobilization (each pore contains only one enzyme type), homogeneous co-immobilization (each 
pore contains two enzymes homogeneously distributed), heterogeneous co-immobilization with A first (enzyme A has a higher surface density 
at the beginning of the pore than enzyme B), and heterogeneous co-immobilization with B first (enzyme B has a higher surface density at the 
beginning of the pore than enzyme A). 
To present results in brief, we solve a case study. The kinetics of the enzyme-catalyzed reactions are chosen to be fast compared to diffusion. The 
diffusivities of the educts and product are fast and the diffusivity of the intermediate is slow. 

Results and discussion
The concentration profiles inside a batch reactor were calculated for all four considered options. Figure 1 shows the respective yields over time. 
Single immobilization performs significantly worse than all three co-immobilization SIS. This is due to the low diffusivity of the intermediate. In 
single immobilization SIS, the intermediate has to travel larger distances from the active site of the first enzyme to the active site of the second 
enzyme. Between the heterogeneous co-immobilization strategies, heterogeneous co-immobilization, with enzyme B first is the best strategy.

Modeling and optimization of cascade reactions of enzymes immobilized in porous 
particles

Leandros Paschalidisa, Jakob Burgerb 
aLaboratory of Chemical Process Engineering, Technical University of Munich, Campus Straubing for Biotechnology and 
Sustainability, Uferstraße 53, 94315.  
bSynBioFoundry@TUM, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 22, 
94315, Straubing, Germany

Abstract: Cascade reactions catalyzed by enzymes immobilized in porous particles is an emerging and environmentally friendly 
method to produce a variety of chemicals starting from renewable resources. Selecting an appropriate spatial immobilization 
strategy (SIS) inside the pores is an important step when designing such reaction processes. Model-based optimization can 
support the selection of a SIS. In the present work, a framework for modeling and optimizing such reaction processes was 
developed. This framework can be applied to simulate, optimize and select an optimal SIS for a given system of enzymes and 
porous particles. This is demonstrated in the present work for a selected problem. 
Keywords: Enzymatic cascade, immobilization, combinatorial optimization, model-based optimization
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Conclusions 
A modeling framework was developed for cascade reactions catalyzed by enzymes immobilized in porous particles. We demonstrated how it can 
be applied to select the best spatial immobilization strategy out of four options. For the studied case, heterogeneous co-immobilization with B 
first was found to be the optimal strategy. 
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Figure 1.   The yields achieved in the four studied options plotted against time.
 Single immobilization, 
 Homogeneous co-immobilization, 
 Heterogeneous co-immobilization with A first,
 Heterogeneous co-immobilization with B first. 

Enzyme A is drawn with blue color while enzyme B is drawn with red color.
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Introduction 
High-toxicity fluorinated gases (F-gases) are powerful greenhouse gases (Purohit and Höglund-Isaksson 2017). It is principally produced in the 
electrolytic aluminum industry in the semiconductor industry. CF4 is the simplest per-fluorocarbon (PFC) having a global warming potential 
(GWP) of 6,630 with a lifetime of 50,000 years. The main methodologies for the PFCs removal are catalytic decomposition, plasma decomposition, 
adsorption, and recycling. Catalytic decomposition may be the simplest, most economical, safe method, high decomposition rate, and low-
temperature operation. A molten metal bubble column reactor (MMBCR) was used to treat F-gases by catalytic decomposition at 500 – 700oC 
(Anus et al. 2021). A one-dimensional (1D) plug flow reactor (PFR) was used for the MMBCRs (Catalan and Rezaei 2020). 
In this study, we developed a kinetic model for SF6 destruction reactions in MMBCs. The chemical reaction kinetics parameters were obtained 
from experimental data, whereas the hydrodynamic parameters were calculated by a drift velocity model.

Model description 
The liquid metal was assumed to be at a constant temperature throughout the reactor due to the liquid recirculation and mixing. Figure 1 shows 
the schematic of MMBCR.

One-dimensional kinetic model with axial dispersion of a molten-metal bubble 
column reactor for decomposition of fluorinated gases

Bang Thanh Lea, Son Ich Ngoa, Hanh Thi Hong Buia, Mazhar Alia, Young-Il Lima, and Uen-Do Leeb 
aCenter of Sustainable Process Engineering (CoSPE), Department of Chemical Engineering, Hankyong National University, 
Republic of Korea 
bEnergy System R&D Group, Korea Institute of Industrial Technology (KITECH), Republic of Korea

Abstract: Fluorinated gases (F-gases) which have been widely used in semiconductor liquid crystal-display (LCD) industries are 
greenhouse gases and their potential contribution to global warming deserves our attention due to intensive infrared absorption 
and long lifetimes of F-gases (Kim et al. 2008). This study presents a combination of the chemical reaction kinetics model and 
hydrodynamic model in a molten-metal bubble column reactor (MMBCR) for SF6 destruction. The one-dimensional (1D) plug-flow 
reactor (PFR) model was coupled with a drift-flux velocity to represent both the chemical reactions kinetics and hydrodynamics 
of MMBCR. The numerical results for SF6 destruction were compared to experimental data. Maximum SF6 removal efficiency of 
73.9% was achieved at 518 oC in an MMBCR with a height of 0.524 m.
Keywords: Semiconductor industry, Fluorinated gas removal, Molten-metal bubble column reactor, Axial dispersion, Reactor 
design

Figure 1. Schematics of MMBCR
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SF6 decomposition in an MMBCR was considered in this study. The SF6 destruction reaction is

SF6(g) + 4Sn(l ) = 3Sn F2(s) + Sn S(s)   (1)

The governing equation included the material balance for species in the gas phase and the momentum balance for pressure change of the gas 
along the height of the column.

(2)rA
dH
dx

Ri
i ν−= (3)g

dH
dP

GGGL ))1(( αραρ −−−=

where where xi is the species molar fraction (-), vi is the stoichiometric coefficients of 
species i in the reaction (-), Ar is the reactor cross-sectional area (m2), r is the net 
reaction rate (mol.cm-3s-1), ρL and ρG are the molten metal and gas density (kg.m-3), 
respectively, αG is the gas holdup in gas-molten metal mixtures, g is the gravitational 
acceleration (9.81 m.s-2), P is the pressure (Pa).

is the species molar fraction (-), where xi is the species molar fraction (-), vi is the stoichiometric coefficients of 
species i in the reaction (-), Ar is the reactor cross-sectional area (m2), r is the net 
reaction rate (mol.cm-3s-1), ρL and ρG are the molten metal and gas density (kg.m-3), 
respectively, αG is the gas holdup in gas-molten metal mixtures, g is the gravitational 
acceleration (9.81 m.s-2), P is the pressure (Pa).

is the stoichiometric coefficients of species i in the reaction (-), Ar is the reactor cross-sectional area 
(m2), r is the net reaction rate (mol.cm-3s-1), ρL and ρG are the molten metal and gas density (kg.m-3), respectively, αG is the gas holdup in gas-
molten metal mixtures, g is the gravitational acceleration (9.81 m.s-2), P is the pressure (Pa).

Results and Discussions.
Fig. 2 shows a good agreement in SF6 conversion between the MMBCR model and the experimental data. The gas feed rate of 500 mL/min, which 
was composed of inert N2 and 1000 ppm SF6, was injected into a molten-Sn bubble column at 518 oC. The removal efficiency increases along the 
reactor height. 73.9% of SF6 removal efficiency was obtained at a reactor height of 0.524 m.

Figure 2.   Comparison of experimental removal 
efficiency with predictions of this model

Conclusions
A one-dimensional kinetic model was developed for the SF6 removal in a molten-Sn bubble column reactor. Both reaction kinetics and bubble 
column hydrodynamic parameters were considered in the MMBCR model. The current model predicted well the SF6 removal efficiency. A SF6 
removal efficiency of 73.9% was obtained at 518oC.
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Introduction 
Lignocellulosic biomass is one of the most promising feedstocks for sustainable alternatives to petroleum-based chemicals and 
materials. ‘Lignin-first” biorefining relies on stabilization methods to deal upfront with lignin extraction rather than collecting it as 
a waste at the end.
Lignin depolymerization is an essential step for its valorization due to its importance for the market of renewable aromatics. 
However, the reaction mechanisms are complex and not yet well understood (Anderson et al., 2018). Nonetheless, optimizing 
reaction conditions to achieve high yield of valuable monomers is essential towards economic viability.
In this study, we aim at identifying significant cost and sustainability drivers and develop macro-models of the reactions to optimize 
process conditions. Those suggested conditions represent prime targets for experimental validation, which would ultimately be 
guided by process-level considerations. 

Results and discussions
Based on process conditions and yields taken from Dick et al. (2022), we built a simulation for the hydrogenolysis of glyoxylic 
acid-functionalized lignin using Aspen Plus V11 (Fig. 1). Lignin is fed into the reactor, operated at 250ºC and up to 90bar, with 
tetrahydrofuran as solvent and reacted on a Ru/C catalyst with hydrogen at 10bar. At the outlet of the reactor, the gas is vented 
to be recycled, whilst the solvent is removed from the lignin oil in a column under vacuum. The monomers are then purified 
by evaporation at reduced pressure to minimize degradation. The operating conditions of the downstream processing units are 
optimized with the in-build DesignSpec function. The techno-economic analysis was performed following the methodology from 
Turton et al. (1985). Cradle-to-gate CO2 emissions are indicators of the environmental impact of the process and are calculated from 
EcoInvent v3.9.1.

In silico solvent selection for optimum lignin depolymerisation process

M. J. Jonesa,b, C. Bourmaudb, A. Ghoshb, M. B. Figueirêdoc, J. Granachera, M. E. G. Ribeiro 
Domingosa, J. S. Luterbacherb, F. Maréchala 
aIndustrial Energy Systems Laboratory, EPFL, 1950 Sion, Switzerland. 
bLaboratory of Sustainable and Catalytic Processing, EPFL, 1015 Lausanne, Switzerland. 
cBloom Biorenewables SA, 1723 Marly, Switzerland

Abstract: The lignin polymer is the most abundant natural source of renewable aromatic molecules. Lignin depolymerization is 
a set of complex reactions for which kinetic modelling is challenging. The impact of the solvent on monomer yield was modelled 
based on limited experimental data, therefore enabling in silico testing of promising candidates from the GSK list of green 
solvents. Using ethanol as the solvent could decrease the CO2 emissions by 82% compared to the base case with tetrahydrofuran. 
The design was found to be most sensitive to coefficients linking solvent polarity and yield. By implementing a feedback loop 
between the lab-scale and process design, this methodology can guide experimental work with process-level considerations, 
therefore accelerating the development of biorefining processes.
Keywords: Lignin-first biorefinery, Chemical process design, Solvent screening
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Figure 1.   Process flow diagram of Aspen Plus simulation

The solvent, which needs to make up for the losses during the downstream separation of the glycolic acid by-product, is responsible 
for 90% of the CO2 footprint of the process and is the second major cost burden of the process. Finding an alternative solvent is thus 
essential to improve the sustainability of lignin depolymerization.
The choice of solvent also greatly impacts monomer yields. Two main mechanisms are indeed involved in lignin depolymerization: 
first lignin solvolysis produces fragments which are then stabilized by catalytic reduction (Anderson et al., 2018).  Five solvents 
recommended in the GSK list of green solvents (Alder et al., 2016) have been tested experimentally in the same process conditions. 
Monomers yields ranging from 12 to 25wt/wt% based on Klason lignin were achieved, in line with previously reported yields (Dick 
et al., 2022).
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To investigate the relationships between the solvent’s properties and the reaction performance, 50 molecular descriptors, including 
the Hansen solubility parameters corrected for the reaction temperature and pressure (Hansen, 2007), were retrieved from tables or 
calculated using open-access packages such as Clapeyron (Walker et al., 2022), RDkit and Thermo. Partial Least Square Regression 
(PLS-R), implemented with the Python library sklearn, was used to select the descriptors that could best explain the observed 
yield. The Hansen solubility parameter for polarity (δp) was found to be linearly correlated with the monomer yield (R2 = 0.94). The 
polarity of the solvent is also known to be directly correlated with the yields of cellulose solvolysis (Ghosh et al., 2015).
With this relationship, we could predict lignin monomer yields as a function of solvent polarity for reaction conditions where solvent 
effects are the main driver. Side reactions of the released protection aldehyde with alcohols are modelled with an equilibrium 
constant calculated from the Gibbs free energy of formations and matched published results (Mutschler et al., 2022).

Figure 2.   Global warming potential and 
monomer yield from experiments (A) and 
predictions (B), for nine solvents. *Biobased 
solvent from wood

Out of the five solvents tested experimentally, propanol achieved the highest yield (Fig. 2A) and highest profit, whilst ethanol 
enabled the lowest CO2 footprint when bio-based. Four new solvents (alcohols and ethers) with high δp at the reaction conditions, 
high volatility difference with the monomers for ease of separation, and ranked as promising alternatives in the GSK list of green 
solvents were tested with the model (Fig. 2B). Albeit 2-methyltetrahydrofuran shows the second lowest GWP, its high price and the 
low monomer yield hinder its use in large scale processing. The predictions for the two alcohols show reduced yields and higher 
CO2 emissions since they are more difficult to source sustainability than shorter alcohols. Experimental validation is paramount to 
confirm those yield predictions.
Finally, we investigated the sensitivity of the design to the coefficients used to calculate the pre-exponential factor. If the gradient 
relating the δp to yield is halved, the yield would indeed decrease by 84%. To assess the robustness of the model, those coefficients 
should be obtained at different pressures and temperatures. 

Conclusions
From a limited number of experimental points, we were able to build a process model to optimize key parameters in lignin 
depolymerization. Our flowsheet indeed enables in silico testing of solvents for lignin monomer production and identified 
promising candidates to reduce the environmental footprint of the process. Ethanol could indeed decrease the CO2 emissions by 
82% compared to commonly used tetrahydrofuran. 
The next steps of this work are three-fold: 1) experimentally validate the monomer yields predicted for new solvents, 2) expand 
the model by investigating the impact of the catalyst and solvent-to-lignin ratio on the monomer yield and distribution and, 3) 
formulate a multi-objective optimization problem to systematically identify optimum process conditions to maximize profit while 
minimizing the environmental impact.
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Introduction 
Pervaporation is a relatively new technology, where the mixture to be treated is evaporated at low pressure on the permeate 
side of the membranes, and the separation of the mixtures takes place with the preferred sorption and diffusion phenomenon 
of the desired component through the dense membranes. Depending on the main permeation compound, the pervaporation 
process can be divided into two main areas: hydrophilic and organophilic pervaporation. In our case, hydrophilic pervaporation 
is investigated, as it is used to dewater organic solvents and separate azeotropic mixtures. Furthermore, the main advantage of 
hydrophilic pervaporation as follows: pollution-free, energy-saving, and high separation efficiency (Toth, 2022). These characteristic 
properties are difficult to achieve with other traditional technologies (Crespo and Brazinha, 2015). The aim of this study was to 
examine the separation of the azeotropic ethanol-water mixture with hybrid distillation and hydrophilic pervaporation method 
in professional flowsheet environment. Energy consumption was also determined to compare the separation with extractive 
distillation.

Material and methods 
In the fine chemical industry, until the current separation problem, ethanol must be separated from its aqueous mixture. In the 
present study, the binary mixture’s initial concentration was 20-weight% ethanol and 80-weight% water. The product purity to be 
achieved is 99.5 weight% for ethanol and 99.9 weight% for water. The feed stream was 800 kg/h. ChemCAD flowsheet simulator 
was applied with user-added pervaporation unit. NRTL thermodynamic method was used in the case of SCDS column type. The 
number of theoretical plates, reflux ratio and reboiler duty were optimized in the case of the distillation process. Figure 1 illustrates 
the flowsheet of the simulated hybrid method.
The pervaporation model of Szilagyi and Toth (2020) was selected to model ethanol dehydration. The main equation of this model:

Modelling of energetically efficient hybrid method for separation of ethanol-water 
mixture

Andras Jozsef Toth, Huyen Trang Do Thi, Eniko Haaz 
Department of Chemical and Environmental Process Engineering, Műegyetem rkp. 3., Budapest, 1111, Hungary

Abstract: It can be concluded that in the fine chemical industries, especially in the pharmaceutical industry, a large amount of 
industrial waste solvents is generated during production technology. Their management is a priority issue because their disposal 
often accounts for the largest share of the cost of the entire technology. Thus, it is necessary to develop regeneration procedures 
that are financially favourable for the factory, and it is possible, in the spirit of the circular economy, to reuse the liquid waste in 
the given technology or possibly elsewhere. The combination of distillation and pervaporation methods is a widely researched 
procedure because it can separate energetically efficient azeotropic mixtures. The hybrid process is developed in this research 
to separate the binary ethanol-water mixture. The separation is optimized in a professional process simulator environment. The 
user-added module is implemented in the case of pervaporation based on semi-empirical transport model. The bottom product 
of the distillation column is 99.9 weight% of water, and the ethanol content of 99.5 weight% can be reached in the retentate 
product of the hydrophilic pervaporation module.
Keywords: hybrid method, ethanol-water, flowsheet simulator, distillation, pervaporation
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1 +
[D̄i ∙ exp(xi1B)]
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∙
[D̄i ∙ ex p(xi1B)]

γ̄i
∙ ( pi1 − pi3

pi0 ) i = (1,…, k)

During the optimization, the goal was to find the minimum membrane size.
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Results and discussion
The results of the optimized parameters of the hybrid method can be found in Table 1. Five membrane modules with 70 m2 
effective membrane transfer area was sufficient to achieve the desired product purities. The distillation column had 12 theoretical 
stages and the reflux ratio was 2. The calculated heat duty of the hybrid method was 605 MJ/h. In a previous study (Toth, 2018), the 
composition of binary mixture with 10 weight% ethanol and 90 weight% water was examined with extractive distillation, where the 
heat duty value of 1491 MJ/h was obtained, which is more significant. The entrainer was ethylene glycol.

Distillation Pervaporation

F W D P R

EtOH [m/m%] 20 0.1 94 1 99.5

Water [m/m%] 80   99.9 6 99 0.5

Table 1. Optimized results of the separation of ethanol-water binary mixture  
(F: Feed, W: Bottom product, D: Distillate, P: Permeate, R: Retentate)

Conclusions
The distillation-hydrophilic pervaporation hybrid method proved effective in ethanol-water separation, as it was possible to extract 
both water and ethanol with the desired purity. The energy-efficient solution can open a new perspective in research.
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Figure 1. Simulated hybrid distillation 
and hydrophilic pervaporation method 
for separating ethanol – water binary 
mixture (based on Toth (2022)
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Introduction 
Hydrogen is produced primarily by steam methane reforming (SMR) that emits a large amount of carbon dioxide as a product of the 
reaction (Msheik et al., 2021).  Non-oxidative CH4 pyrolysis in a molten-metal bubble column reactor (MMBCR) (Kudinov et al., 2021)  
is a promising method to produce H2 without CO2 emission:

Effect of electromagnetic fields on hydrodynamics of bubbles in a molten-metal 
bubble column reactor using CFD simulation

Hanh Thi Hong Bui, Son Ich Ngo, Young Il-Lima 
aCenter of Sustainable Process Engineering (CoSPE), Department of Chemical Engineering, Hankyong National University, 
Gyeonggi-do, Anseong-si, Jungang-ro 327, 17579 Korea

Abstract: The use of molten-metal bubble column reactors (MMBCRs) to produce CO2-free hydrogen has gained much interest 
in recent years. In this study, the effect of electromagnetic fields on the hydrodynamics of bubbles was investigated using CFD 
simulation. A volume of fluid CFD (VOF-CFD) model coupled with a large-eddy simulation (LES) model for turbulence was used 
to simulate the hydrodynamics of gas-liquid two-phase flow in an MMBCR. Electromagnetic fields were applied to the MMBCR 
via a magnetohydrodynamic (MHD) model. The number of meshes required for the LES model was determined to obtain over 
80% of resolved turbulence kinetic energy. The bubble rising velocity is investigated by CFD simulation which was validated 
with experimental data with and without the electromagnetic field. The terminal velocity of bubbles with a diameter of 3 mm 
was inhibited by a strong magnetic field. Understanding the hydrodynamics of MMBCR is useful to identify optimal operating 
conditions and reactor design.
Keywords: Molten-metal bubble column reactor (MMBCR), Magnetohydrodynamic (MHD) model, Volume of fraction model 
(VOF)

The hydrodynamic parameters of bubbles such as gas holdup, bubble size, bubble velocity, and bubble size distribution play a 
significant role in methane conversion since they affect the interfacial area and resident time of methane in MMBCRs (Leal Pérez et 
al., 2021). Several approaches were proposed to enhance the performance of MMBCRs such as exposing an electromagnetic field to 
lengthen the bubble residence time (Wang et al., 2017). 
The volume-of-fluid computational fluid dynamics (VOF-CFD) is an effective tool for capturing the gas-liquid interface area 
(Ngo et al., 2023). A magnetohydrodynamic (MHD) model was coupled with the VOF-CFD to represent the magnetic fields and 
hydrodynamics (Fehling et al., 2017). 
In this study, a VOF-CFD model coupled with a large eddy simulation (LES) turbulence model and an MHD model was developed 
for CH4 pyrolysis in an MMBCR with an electromagnetic field. The VOF-CFD model were then validated against experimental data 
in the literature for a GaInSn-Ar system.

VOF-CFD model
Governing equation
Equations of continuity, momentum, and electromagnetic force are described in Eq (2), (3), and (4), respectively (Ngo et al., 2023).
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Geometry and meshing
The 3D geometry was created based on the GaInSn-Ar system (Wang et al., 2017). Polyhedral meshes was small enough to capture 
all bubble diameters in the experiment. The mesh independence test was checked for at least 80% resolved turbulence kinetic 
energy.
Physical properties and boundary conditions 
Physical properties such as the density (ρ), viscosity (μ), and surface tension (σ) were taken from elsewhere (Wang et al., 2017). The 
contact angle (θ) of fluid was set to 130˚ in metallic nonwetting.

Results and discussion
The bubble rising velocity of a 3 mm bubble diameter at different electromagnetic strengths is depicted in Figure 1. The tendency 
of bubble velocity obtained from the VOF-CFD model agrees well with the experiment data (Wang et al., 2017). The bubble terminal 
velocity decreases as the electromagnetic field strength increases, due to the Lorentz force.

Figure 1. Bubble rising velocity (de=3mm) 
in different magnetic strength

Conclusions
A volume of fluid computational fluid dynamics (VOF-CFD) coupled with a large eddy simulation (LES) turbulence model and 
magnetohydrodynamics (MHD) model was developed for a molten-metal bubble column reactor (MMBCR). The VOF-CFD model 
was verified and validated against the experimental data of the GaInSn-Ar system. An MMBCR under electromagnetic fields showed 
lower bubble terminal velocities than those without electromagnetic field.

Acknowledgments
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT; No. 
2022M3J5A1051728 and 2021R1A2C1011618).

References
Fehling, T., Steinberg, T., Baake, E., (2017). Numerical modeling of bubble dynamics in liquid metal exposed to electromagnetic fields for hydrogen production. International 
Journal of Applied Electromagnetics and Mechanics 53, S111-S120.
Kudinov, I.V., Pimenov, A.A., Kryukov, Y.A., Mikheeva, G.V., (2021). A theoretical and experimental study on hydrodynamics, heat exchange and diffusion during methane pyrolysis 
in a layer of molten tin. Int. J. Hydrog. Energy 46(17), 10183-10190.
Leal Pérez, B.J., Medrano Jiménez, J.A., Bhardwaj, R., Goetheer, E., van Sint Annaland, M., Gallucci, F., (2021). Methane pyrolysis in a molten gallium bubble column reactor for 
sustainable hydrogen production: Proof of concept & techno-economic assessment. International Journal of Hydrogen Energy 46(7), 4917-4935.
Msheik, M., Rodat, S., Abanades, S., (2021). Methane Cracking for Hydrogen Production: A Review of Catalytic and Molten Media Pyrolysis, Energies.
Ngo, S.I., Lim, Y.-I., Kwon, H.M., Lee, U.-D., (2023). Hydrodynamics of molten-metal bubble columns in the near-bubbling field using volume of fluid computational fluid dynamics. 
Chem. Eng. J. 454, 140073.
Wang, Z.H., Wang, S.D., Meng, X., Ni, M.J., (2017). UDV measurements of single bubble rising in a liquid metal Galinstan with a transverse magnetic field. International Journal of 
Multiphase Flow 94, 201-208.



18

THEME 1 
Modelling and optimization for 
multi-scale integration

Theme 1: Modelling and optimization for multi-scale integration

Paper 323

Introduction
The maintenance of machines is crucial for safe and profitable operation in the process industries. Traditionally this is done using a 
preventative maintenance (PvM) framework in which a regular maintenance interval is set for each unit in a process. This approach 
does not account for fluctuations in the process conditions that might illicit premature failure in a unit before it’s maintenance 
period has elapsed. The result is unplanned downtime of the process. Traditional root cause analysis (RCA) of these failures relies on 
deep, domain specific knowledge from a few experienced members of the operations and engineering This is a time consuming 
process that requires significant personnel input (Chemenwo et al., 2016). Furthermore, with the retirement of the aging workforce 
leading to a reduction in plant specific expertise, it is necessary to formulate new methods to analyse process failure (DeLong, 2004).
A potential solution could lie in the data driven techniques proposed by researchers since the advent of industry 4.0 (I4.0). However, 
many techniques proposed require either a knowledge of a confirmed ‘normal’ state of operation for a system, or a detailed 
knowledge of all possible failure states with datasets to match. Both of these are hard to come by, with the former varying based on 
external factors (shift, weather condition, product) and the latter increasing exponentially with the size of the process. Even then, 
the lack of process understanding of the models limits the ability to troubleshoot detected fault, offering merely as a tool to flag 
when an issue might occur without giving the crucial detail of why, or more importantly how can it be prevented.
This paper proposes an alternative approach which builds on a foundation of process knowledge to enhance the fault detection 
and troubleshooting ability of deep learning (DL) algorithms. The novelty of this work is in:
•  Implementation of process knowledge graphs to enhance the fault detection capabilities of the deep learning models using novel 

anomaly score.
• Root cause analysis of detected faults through understanding of causal process relationships.

Methodology
We represent a manufacturing process as a network of sensors We represent a manufacturing process as a network of sensors  containing a finite 

set of nodes  where ; a set of edges  connecting nodes  and  based on a 
knowledge of causal relationships between sensors, and a weighted adjacency matrix  where  
represents the weight of the edge between node  and , or 0 if they are not connected. Edge weights 
are calculated using a thresholded Gaussian kernel (Shuman et al., 2013). Each node  has an 
associated column vector  where T is the length of data.

The deep learning framework shown in Figure 1 is based on a generative adversarial network 
(Goodfellow et al., 2020) with graph convolution. This is referred to as a graph convolutional 
generative adversarial network (GCGAN). A generator is trained to forecast data for each node, and 
a discriminator is trained to detect if the generated time series is real or fake. We divide the 
generator into two modules. A short term module based on a graph convolutional gated recurrent 
unit (GCGRU) architecture aims at capturing the spatiotemporal features of the data to predict 
across a shortened time period, , to capture point anomalies or step changes (Deng et al., 2022). A 
long term module based on a long short term memory (LSTM) architecture aims at predicting each 
sensor across time period to identify degradation or cyclical anomaly. The two outputs are 
combined in a graph convolutional network (GCN) layer to give the final prediction   . This 
prediction is added to the generated sequence to give . The generator is trained using a mean 
squared error (MSE) loss function.

The discriminator compares the generated sequence with the real sequence 
 using a binary cross entropy (BCE) loss function. The discriminator is used in training 

to help the generator to observe spatiotemporal relationship. It can also be used to help detect 
anomaly.
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The deep learning framework shown in Figure 1 is based on a generative adversarial network (Goodfellow et al., 2020) with graph 
convolution. This is referred to as a graph convolutional generative adversarial network (GCGAN). A generator is trained to forecast 
data for each node, and a discriminator is trained to detect if the generated time series is real or fake. We divide the generator into 
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Ŝt
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Graph based fault detection and root cause analysis in process manufacturing
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Abstract: Unplanned downtime is a billion-dollar problem faced by process manufacturers across the world. Failure to prevent 
unplanned downtime leads to spiralling costs, including labour, part and material costs, safety issues, and concerns regarding 
process sustainability. Therefore, the need for an appropriate solution is desperate. Here we propose a method to detect and 
analyse the root cause of problems in process manufacturing environments by using advanced data driven techniques combined 
with domain knowledge. It is expected that the integration of this system will have a considerable impact in terms of maintenance 
efficiency, safety improvements and an increase in process sustainability.
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Anomaly Detection
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Figure 1.   Framework for 
training a GCGAN model.

Conclusion
 We propose a GCGAN framework to incorporate chemical engineering domain knowledge into deep-learning based predictive 
maintenance. The result can identify fault in a sensor network and use known relationships to analyse the root cause. This knowledge 
enables early intervention and facilitates the management of plant issues to increase maintenance efficiency
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Introduction
Model-based design of experiments (MBDoE) for parameter precision can greatly accelerate the development of predictive 
mechanistic models (Franceschini and Macchietto, 2008). A particular focus has been on sequential MBDoE, where (possibly dynamic) 
experiments are designed one-at-a-time using gradient-based techniques. For nonlinear models, the resulting optimisation 
problems are typically nonconvex, and thus prone to converging to local optima. Numerical failure caused by singular information 
matrices is also commonplace. Such computational challenges hinder the design of experimental campaigns comprising multiple 
parallel runs.
Effort-based methods (Kusumo et al., 2022; Vanaret et al., 2021) overcome these challenges by discretising the experimental space 
into a finite set of candidate experiments. They determine the fraction of the total number of experiments (the “effort”) associated 
with each candidate, with the objective of selecting the combination of experiments that will generate the highest information 
content. Treating the efforts as continuous variables leads to a convex formulation that can be solved efficiently using convex 
optimisation techniques. However, the optimised efforts typically assume fractional values, which need to be rounded to integer 
values in a subsequent step. This a posteriori effort rounding can result in large suboptimality, especially for campaigns with a small 
number of experiments.

Methodology
In this study, a discrete-effort methodology for the exact design of experiment campaigns comprising a finite number of 
experiments is presented. Integrality constraints on the number of experiment replicates are enforced directly through pure integer 
programming, with a convex objective function and linear constraints. Given the generic model in Eq. (1), the experimental design 
space is discretised using low-discrepancy sampling (Sobol, 1967), and the Fisher information matrix Hi is computed for each 
candidate experiment as shown in Eq. (2). In Eqs. (1)–(2), y corresponds to experimental measurements, f  to model predictions, u 
and θ are experimental decision variables and model parameters, respectively, and Εy is the covariance matrix of the measurements.

Numerical investigation of exact designs in optimal experiment campaigns
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Case Study
The presented methodology is applied to the semi-continuous fermentation of baker’s yeast, modelled by Eqs. (5)–(6) with Monod-
type kinetics.
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Table 1. Comparison of effort-based approaches

Methodology logdetH CPU time [s]

Continuous design 43.77 0.35

Apportionment 43.69 –

Exact design 43.76 0.97

Conclusions
Campaigns obtained by solving the exact design case show lower degrees of suboptimality compared with approximations of 
the continuous-effort solutions; the method prioritises experiments with exceptional information content, while continuous-effort 
designs attempt to include all candidates with nonzero effort.
For the considered case study, the exact design problem is computationally tractable. In general, computational requirements 
are proportional to the number of experiment samples, and sensitivity calculations during the design space discretisation often 
represent the greatest cost (in particular for complex models).
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Introduction
Hydrogen is an essential resource in refineries. However, the current hydrogen requirement, which is largely dependent on steam 
methane reforming (SMR), represents a considerable energy demand, cost, and emissions for refineries. An optimal hydrogen 
network addresses the issue from two perspectives. On the one hand, purge gases from hydrogen processing units are important 
hydrogen and energy resources and making full use of them can efficiently reduce the hydrogen and heat demands of refineries; 
on the other hand, integrating different hydrogen suppliers, such as blue hydrogen with carbon capture and green hydrogen from 
electrolysis and renewables, has the potential to reduce the carbon footprints and costs at source.
In recent years, a number of studies were conducted for hydrogen network designs using mathematical programming methods and 
took various constraints into consideration, such as light hydrocarbon recovery (Yang et al., 2022), hydrogen turbines integration (Liu 
et al., 2020), CO2 mitigation (Tock and Marechal, 2012), etc. However, a holistic approach considering heat integration, environmental 
impacts, and alternative hydrogen utilities is still lacking. In this work, we propose a mixed integer linear programming (MILP) 
method to address the research gap. Compared to non-linear programming methods, the MILP method, first formulated by Kantor 
at al., 2020, can achieve global optimum with much fewer computation efforts given a reasonable simplification of the problem.

Methodology
As shown in Figure 1, the superstructure of a refinery hydrogen network consists of a hydrogen utility (steam methane reforming 
(SMR) or electrolysis), a catalytic reforming unit (CRU), hydroprocessors (hydrocrackers and hydrotreaters), a pressure swing 
adsorption (PSA) unit, a fuel gas sink, a natural gas boiler, and a carbon capture unit (CC). Among these units, hydroprocessors are 
specified by their minimum outlet flowrate and concentration to guarantee sufficient hydrogen partial pressures in the reactor. 
The boiler, SMR, PSA and carbon capture unit are modeled by describing their mass flows, investment cost, and heat and electricity 
demand. Assuming known purities at hydrogen sources, we use a MILP formula to optimize the hydrogen network and balance the 
trade-off between cost and environmental impacts under a multi-objective optimization framework. The market prices for different 
utilities are natural gas 0.0224$/kWh; electricity 0.2149 $/kWh; water 0.03 $/ton. The impact data is retrieved from Ecoinvent life 
cycle inventory database. The minimum energy requirement is illustrated by the approach developed by Kantor et al., 2020.

Multi-scale integration and multi-objective optimization of the hydrogen network in an 
oil refinery

Yi Zhaoa, Guilherme Nascimentoa, Rafael Castro-Amoedoa, François Maréchala 
aIndustrial Process and Energy Systems Engineering Laboratory, École Polytechnique de Fédérale Lausanne, Switzerland

Abstract: In this work, a mixed integer linear programming (MILP) formulation is applied to obtain optimal hydrogen network 
designs in an oil refinery. Heat integration, which is frequently overlooked in the literature, is addressed using pinch analysis 
to evaluate the energy saving potential. A number of scenarios are analyzed considering different hydrogen production 
technologies. Under each scenario, multi-objective optimization is carried out to capture the unavoidable trade-off between 
the cost and carbon footprint. By applying our methodology to a typical refinery with a net hydrogen demand of 10.8 ton/h, the 
results show that the lowest cost (2.42 $/kg) and impact (4.11 kg CO2/kg) are obtained with blue hydrogen sources. This study 
highlights the energy savings and carbon reductions brought by optimal hydrogen network designs and could provide useful 
guidance for the management of hydrogen in refineries.
Keywords: Hydrogen network, Mixed integer linear programming, Energy integration, Multi-objective optimization

Figure 1 Superstructure of the refinery hydrogen network
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Results
Under different hydrogen suppliers, four optimal configurations are identified for a typical refinery with a theoretical hydrogen 
demand for 10.8 t/h, and their corresponding cost and impacts are shown in Figure 2(a). Meeting the refinery hydrogen demand 
with blue hydrogen has the lowest impact (4.11 kg CO2/kg) and cost (2.42 $/kg), while green hydrogen and grey hydrogen have 
limitations either on the cost or on the impact, respectively. The minimum energy requirement, obtained using pinch analysis, is 
shown in Figure 2(b): Case 3 has the highest heat and cold utility demand due to the simultaneous usage of SMR and carbon capture. 
Figures 2(c) and 2(d) present the detailed cost and impact breakdown of the different cases. It was found that despite of a lower 
natural gas consumption in Case 4 owing to the usage of electrolyzers, the extremely high electricity consumption contributes to 
the highest cost and is responsible for considerable carbon emissions. When comparing Case 3 and Case 1, the usage of carbon 
capture unit (MEA) increases the consumption of natural gas and electricity thus leading to a higher cost, but it significantly reduces 
the direct carbon emissions from boilers and SMR.

Figure 2 (a)The impacts and annu-
alized cost of the optimal configura-
tion with different hydrogen utilities; 
(b) the minimum energy requirement 
for different cases; (c) The cost break-
down and (d) the impact breakdown 
of different cases in (a).

Conclusion
This work developed a multi-scale integration approach to address the hydrogen network design problem with heat integration 
and alternative hydrogen utilities. A MILP model within a multi-objective framework was formulated, capturing both the economic 
and environmental constraints of the system. When applying the method into a typical refinery in Europe, it was found that the 
optimal hydrogen network design changed with hydrogen suppliers. The lowest cost (2.42 $/kg) and impact (4.11 kg CO2/kg) were 
achieved with blue hydrogen from steam methane reforming incorporating carbon capture. Future work will focus on improving the 
hydrogen network superstructure and assess the sensitivity of the optimization results to technical, environmental and economic 
assumptions
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Introduction
Gas flow modeling is key to the optimization of energy systems with gaseous fuels, such as natural gas and hydrogen (Klatzer et al., 
2022). However, the nonconvex equations governing gas flow dynamics pose a computational challenge to system optimization. 
Thus, techniques such as linear approximation (Correa-Posada and Sanchez-Martin, 2015) and second-order cone (SOC) relaxation 
(Chen et al., 2022) have been deployed to obtain dynamic flow models that remain computationally tractable for daily time horizons. 
In contrast, optimizations on longer time horizons usually rely on static flow models (Klatzer et al., 2022). However, static models 
neglect linepack flexibility, which is key to buffering gas supply against demand fluctuations. Furthermore, static models assume 
immediate gas delivery, which does not hold especially for long pipes due to the practical flow speed limit of 55 km/h (Kumar, 1987).

Gas Flow Models
Gas flow dynamics in the unidirectional pipe mn at time t are captured by the equations of continuity, Eq. (1), and momentum, Eq. 
(2), (Correa-Posada and Sanchez-Martin, 2015). Eq. (3) enforces the practical flow limit at the inlet (in) and outlet (out) of the pipe.

Computationally efficient gas flow models for energy system optimization

Behnam Akbari, Paolo Gabrielli, Giovanni Sansavini 
Institute of Energy and Process Engineering, ETH Zurich, Switzerland

Abstract: The nonconvex equations governing gas flow dynamics are computationally challenging to incorporate into long-
term planning optimization of energy systems. This work proposes computationally efficient gas flow models that allow capturing 
flow dynamics in energy system optimizations with annual horizons. More specifically, the different behavior of gas pipes is 
described based on their length. We introduce a linear static model for short pipes and enhance a second-order cone dynamic 
model for long pipes by parallel pipe aggregation and fixing flow directions. Computational experiments on a single pipe and on 
the Belgian gas network validate the accuracy and efficiency of the models. 
Keywords: Convex optimization, energy system optimization, gas flow dynamics, gas networks, transfer capacity
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. A penalty method 
enhances the relaxation quality and solution feasibility at a moderate computational cost. Bidirectional pipes can be modeled by 
adding integer variables denoting flow directions. To address the arising computational complexity, this work determines the flow 
directions using the SOC static model and fixes the corresponding integer variables in the SOC dynamic model accordingly.
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 are small. In this case, Eqs. (1) and (2) are approximated with Eqs. (5) and (6), respectively, and flow limits due 
to pressure bounds are represented as Eq. (7).
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Parallel pipes can be aggregated without affecting the total linepack and flow by setting the equivalent constants in Eqs. (1b) and 
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Computational Results
We maximize the outlet flow of a pipe to compute the transfer capacity as a measure of accuracy under static conditions. The linear 
static model accurately captures the dependence of transfer capacity on pipe length (Figure 1).
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To assess the accuracy under dynamic conditions, we combine  the 
linear static model for short pipes and the SOC dynamic model for 
long pipes in the application to the 24-pipe Belgian gas network 
(De Wolf and Smeers, 2000). We model an increasing number 
of pipes via the SOC dynamic model and minimize gas supply 
cost by optimizing gas supply and linepack. Figure 2 shows that 
1%-2% cost saving is realized if 2-7 pipes are captured with the 
dynamic model, which allows linepack flexibility. While fixing 
the flow directions based on the SOC static model may result in 
minor suboptimality, it enhances the solution speed by 1-3 orders 
of magnitude. Because the solution time of the SOC dynamic 
model increases hyperlinearly with the number of pipes, parallel 
pipe aggregation significantly enhances solution speed. These 
enhancements yield accurate solutions for horizons up to 8760 
hours within 300 seconds.
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Figure 2. Application to the Belgian gas network

Conclusions
This work proposes computationally efficient gas flow models for capturing flow dynamics in long-term planning optimization of 
energy systems. We introduce (1) a linear static model, for short pipes, that accurately captures the transfer capacity, and (2) a SOC 
dynamic model for long pipes. The performance of the dynamic model is significantly enhanced by parallel pipe aggregation and 
fixing the flow directions using a static solution.
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Introduction
Life cycle assessment (LCA) is widely used to evaluate environmental impacts, by aggregating different impact categories into a 
single Eco-Indicator, which is normally taken as the final environmental objective function (Kalbar et al., 2017). Nevertheless, the 
attained solution of the problem is influenced by the weighted sum procedure. In this study, a method named Pareto aggregation is 
proposed which takes into consideration decision-maker preferences and identifies the most conflicting indicators and aggregates 
them to a final environmental objective, which is then traded-off with an economic objective. This approach is validated on a 
realistic and complex biorefinery case study for second-generation bioethanol production in Belgium.

Methods
Bioethanol production from corn stover is simulated in Aspen Plus v12.1, based on the model of Humbird et al. (2011). The 
pretreatment reactor is modelled using the kinetic model of Shi et al. (2017). The ethanol levelized production cost is calculated, 
while an LCA is performed in SimaPro to estimate the environmental impact. A cradle-to-gate analysis is conducted with 1kg of 
ethanol produced as functional unit. The life cycle inventory is based on EcoInvent database and the Midpoint ReCiPe method is 
used to calculate 18 environmental indicators.
The optimization variables include the pretreatment reactor temperature, acid loading and residence time. Five impact indicators, 
namely Global warming, Freshwater eutrophication, Marine eutrophication, Land use and Water consumption, are investigated in 
the Pareto aggregation, according to decision-maker preferences (Baudry et al., 2017). The multi-objective optimization problems 
are solved with a genetic algorithm in MATLAB, exchanging data with ASPEN Plus for the technical backbone.  

Results      
Ten different Pareto fronts are obtained for the five environmental indicators, which are normalized to a base case scenario. Global 
warming and Water consumption are conflicting indicators in contrast to Marine eutrophication and Land use, which do not 
require a trade-off, as the relative difference for both indicators is less than 1E-03. Based on the Pareto aggregation results, Land 
use indicator is not conflicting and thus is left out of the final environmental objective. The Pareto front obtained for the economic-
environmental multi-objective optimization (Figure 1) indicate that there is a small trade-off to be made between the aggregated 
environmental and the levelized cost objectives for the studied optimization variables. 

A Pareto aggregation approach for environmental-economic multi-objective 
optimization problems validated on a second-generation bioethanol production 
model 
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Abstract: The increase in greenhouse gas emissions and energy demands have shifted the interest from traditional fossil fuels 
to biofuels, among others. Lignocellulosic biomass can be used as a renewable non-food resource for the production of advanced 
biofuels. In this study, a model-based multi-objective optimization approach is developed with respect to the economic and 
environmental performance of a second-generation bioethanol biorefinery. A method named Pareto aggregation is proposed 
which employs a novel multi-objective optimization based approach as an alternative for the classically used aggregation in 
life cycle assessment. This method identifies conflicting environmental indicators and based on decision-maker preferences, an 
aggregation is performed between those that require a trade-off. This aggregated environmental objective is then traded off 
with the economic objective function, chosen as the levelized cost of ethanol. Process parameters from a biochemical conversion 
pathway simulation model are chosen as optimization variables. Bioethanol production from corn stover in Belgium is used 
as the case study. The final Pareto optimal solutions obtained indicate the best performance possibilities for the investigated 
biorefinery. This research provides an insight on non-redundant objective functions while reducing the dimensionality of multi-
objective environmental-economic optimization problems.
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Conclusions
A novel method, named Pareto aggregation, is suggested for generating an environmental objective function, by identifying the 
most important and conflicting environmental indicators. This method was applied for advanced bioethanol production in an 
economic-environmental multi-objective optimization. A relatively small trade-off was identified for the chosen optimization 
variables. 

Figure 1. Economic-environmental Pareto front
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Introduction
Production processes of particulate materials usually have a rather complex technological structure. To obtain granular products 
with the desired properties, several processing steps with different types of equipment are often combined. Design, implementation, 
and optimization of such structures are very complex and expensive tasks due to the large number of parameters that must be 
considered at the same time. Numerical simulations can help solve this problem, but the variety of devices and material properties 
makes the simulation process very challenging when trying to combine such heterogeneous models in a single modelling 
environment. An additional level of complexity arises from the need to consider the transient behaviour of the processes, and 
from the nature of the granular matter, where every particle can have its own properties. Both significantly complicate models and 
simulation algorithms. The simulation system Dyssol (Skorych et al., 2017) is designed to tackle these problems, allowing dynamic 
flowsheet simulations of complex solids processes.

Simulation methods 
There is a large diversity of models describing processes involving solids. They can use algebraic and differential equations, 
population balances (Skorych et al., 2019), statistical, or data-driven methods (Skorych et al., 2022), etc. To ensure the integration of 
such a variety of models, Dyssol applies a sequential-modular calculation approach. It assumes that every model on the flowsheet 
is solved independently using a suitable calculation method. This greatly increases flexibility during the model development, since 
now every unit can be developed disregarding the approaches applied in the rest. As a result, heterogeneous models can be used 
on the same flowsheet.

Open source software for flowsheet modeling of solids processes
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Abstract: To close an existing gap in macroscale dynamic modelling of granular solids processes, the Dyssol simulation 
framework is being developed. This software can simulate the transient behaviour of complex process structures in the area of 
solids processing technology. Dyssol applies a sequential-modular approach, which allows using different calculation techniques 
for different units, enabling the combination of heterogeneous models in a single flowsheet. The use of the waveform relaxation 
method makes it possible to calculate dynamic processes fast and reliably. The used transformation matrix technique allows the 
correct calculation of multidimensional interdependent distributed properties of the solid phase. Both dynamic and steady-state 
models are supported and can be used together in the same flowsheet. The system is open-source, cross-platform and flexible, 
which makes it easy to add new custom modules and adjust Dyssol for each specific application.
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Figure 1. Process structures of chemical 
looping combustion (left) and agglom-
eration (right) processes.
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One of the main drawbacks of the sequential-modular method is the complex treatment of flowsheets with recycle streams since 
all loops must be solved iteratively. For this, all recirculation flows are assigned initial values, and the calculation of units is repeated 
until a converged solution is found. Dynamic models further complicate this process, since the solution must be simultaneously 
found for a whole simulation interval. To overcome this, the whole interval is split into smaller time windows, and the solution is 
sought on each of them sequentially. This greatly reduces the number of iterations required.

Multidimensional properties of solids 
One of the distinctive features of Dyssol is its advanced solids treatment. In addition to the commonly used description of bulk 
materials using particle size distribution, the program allows the application of additional distributed properties, like particle 
porosity, density, or moisture content. Moreover, they can be interdependent, forming a multidimensional set of parameters. 
Here, in addition to the obvious problems of storing and fast processing a large amount of data, the question arises of how to 
maintain the interdependency between distributions during calculations. To deal with this issue, Dyssol offers a method based on 
transformation matrices (Skorych et al., 2019). Here, instead of directly calculating output distributions, it is proposed to build a 
matrix that describes the laws of particle rearrangement between grid classes. The subsequent application of this transformation 
matrix allows us to calculate the target distribution and correctly maintain information about the dependent ones.

Accessibility
Dyssol has a graphical user interface that allows creating and configuring flowsheets and analyzing simulation results. It comes with 
extensive online documentation that includes a description of the user interface and models, explanations of the algorithms and 
methods used, etc. Available simulation examples and tutorials make it easier to get started with the program and develop custom 
models.
Dyssol and all models are written in the C++ programming language. The system provides a standardized programming interface, 
to allow the development of custom models. To simplify the process, preconfigured templates and examples are provided.
The source code and executables are released under the BSD license, which allows distribution, modification and use for any 
purpose (Skorych et al., 2020). The program runs on Linux and Windows operating systems, and its source code is available on 
GitHub (https://github.com/FlowsheetSimulation/Dyssol-open).

Conclusions
The developed Dyssol simulation system was designed to provide the ability to simulate the dynamic behaviour of complex 
production circuits built upon heterogeneous models that describe processes involving the solid phase. Advanced consideration 
of granular material involves its description using multidimensional distributed properties and its calculation using transformation 
matrices.
Thanks to its extensibility and permissive open-source software license, the program can be used without restrictions in education, 
science and industry for modelling a wide range of solids production processes.
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Introduction
Deriving accurate kinetic models of reaction systems is a challenging task that requires solving two nested problems, i.e., model 
identification and parameter estimation. First, the model structure needs to be defined, and the optimal parameter values are found 
next (considering some experimental data). In this work, we perform model identification for describing complex heterogeneous 
kinetic systems using a data-driven methodology based on symbolic regression. In essence, the idea is to apply symbolic regression 
to build kinetic models without any predefined structure. To this end, we employ the Bayesian Machine Scientist (BMS) (Guimerà et 
al., 2020) to predict reaction rates, using acrylonitrile production in propene ammoxidation over α-bismuth molybdate as a testbed 
(Licht et al., 2016). Usually, parameter estimation for kinetic model building is solved either sequentially or simultaneously (Michalik 
et al., 2009), and very often considering a given fixed mathematical structure based on first principles, such as the Generalized 
Mass Action (GMA) and Langmuir-Hinshelwood (LH) models. The difference lies in how the parameters of these models are fitted. 
During the sequential approach, integration is required at each fitting step, which is computationally costly. As for the simultaneous 
approach, the regression problem requires the differential equations to be reformulated using orthogonal collocation methods. 
This results in a complex nonlinear programming (NLP) model, where providing a good initial point might be challenging. 
Here, we shall assume no aprioristic model structure concerning the kinetic expression but rather build one not constrained by any 
formalism using symbolic regression. Moreover, we apply an incremental approach that decouples fitting from integration (Brendel 
et al., 2006). This strategy avoids both the iterative integration step and solving complex NLPs while facilitating the application 
of symbolic regression for kinetic model building. Notably, after obtaining the species slopes analytically, we derive closed-form 
expressions that predict their values from the state variables using symbolic regression. This allows us to obtain a flexible analytical 
kinetic expression that is more interpretable than standard black-box surrogates.

Methods
We consider a general kinetic modeling problem where we are given concentration profiles of the species involved in a reaction, 
and the goal is to find a kinetic model encompassing a set of differential equations that accurately approximate such profiles. 
To illustrate the capabilities of the approach, we focus on acrylonitrile production in propene ammoxidation over α-bismuth 
molybdate.
Our methodology, which employs the previously mentioned BMS algorithm for symbolic regression, comprises the following 
general steps discussed below. 
1)  Reproduce isothermal isobaric kinetic experiments in silico at different temperatures. The kinetic data is obtained from Licht et 

al. (2016).
2)  Obtain the slopes of the desired species profiles by using symbolic regression to describe them analytically. This is done by 

applying a one-dimensional BMS for symbolic regression and analytically differentiating the resulting expression. 
3)  Train a general BMS using state variables, i.e., partial pressures of all the species and temperature, to fit the previously calculated 

slopes. 
4) Obtain the performance metric, i.e., R2, of the integrated BMS models using in silico profiles.
We create ten training experiments, with temperatures separated uniformly from 607 K to 773 K. The initial conditions consist 
of a flow of C3H6, NH3, O2, H2O, and inert such that, at 273 K and with a volumetric flow of 100 mL/min, the partial pressures 
are respectively 8, 8, 16, and 10.5 kPa for the four reactive species assuming ideal gas behavior. The total pressure is 120 kPa. The 
experiments are kept isothermal and isobaric. We perform a comparison among three different cases: (1) low conversion of the 
main reagent, i.e., propene, without noise with extrapolation (LC), (2) complete conversion of propene with Gaussian noise and 
500 equidistant points (N1), and (3) complete conversion of propene with Gaussian noise for 50 equidistant points (N2). We also 
compare the results from fitting the BMS equation using the true value of the rate obtained from the in silico true kinetic expression 
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Table 1. Test experiments for the six BMS models

 Test 
run T [K] R2

TV
(LC/N1/N2)

R2
AV

(LC/N1/N2)

#1 613 0.99/0.99/0.89 0.99/0.98/0.70

#2 630 1.00/0.99/0.99 0.99/0.99/0.98

#3 646 0.99/0.99/0.99 0.99/0.99/0.97

#4 663 0.98/0.99/0.99 0.99/0.99/0.94

#5 680 0.75/0.99/0.99 0.99/0.98/0.95

#6 696 0.72*/0.99/0.99 0.95/0.97/0.96

#7 713 0.77*/0.99/0.99 0.91/0.91/0.96

#8 730 0.81*/0.99/0.99 0.83/0.93/0.98

#9 747 0.82*/0.99/0.98 0.71/0.88/-8.48

#10 763 0.83*/0.84/0.85 0.43/0.70/-12.51
*Indicates that the integration was stopped due to numerical errors.  

Bold signals the best model for each test run.  
An R2 value close to one implies that the BMS model correctly approximates the in silico model.

(TV) and the approximate value from differentiating the analytical expression (AV), for a total of six different BMS models.
Results
The performance results are shown in Table 1. The integrated points to calculate the performance metric for the test experiments are 
chosen as 21 equidistant points between 0 and 10 m2 of the catalyst surface. Numerical problems may arise during the integration 
of the symbolic model. Hence, we report the results up to the point when the integrator fails in those cases.

Conclusions
Here we applied symbolic regression to find analytical kinetic models of reaction systems. We found that the proposed framework 
can identify fairly accurate models for most test experiments. In some cases, especially at higher temperatures, the integrated 
result differs significantly from the in silico profiles. As expected, the best results are obtained using true slopes to train the BMS 
(TV), although numerical instability during extrapolation arises in the low conversion cases (LC). Therefore, iteratively adjusting the 
calculated slopes may improve the methodology.
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Introduction
Pulp and paper mills are known to convert large amounts of woody biomass, usually being a net exporter of energy in form of 
electricity. While not consuming significant amounts of fossil resources, the limited availability of woody biomass enhances the 
shift towards an intensification of resource usage in the pulp industry by co-production of pulp and other bio-based products. 
Simultaneously, a shift from fossil energy carriers to renewables is likely to generate uncertainties in electricity supply and related 
environmental impact on the energy system, causing a mismatch of demand and supply. In that regard, renewable power-to-X (P2X) 
is an emerging concept for storing excess electricity from intermittent renewable energy while supporting the decarbonization of 
transport and energy infrastructure. Furthermore, Carbon capture and utilization (CCUS) offers great potential to reduce emissions 
in industrial applications. In this contribution, the integration of a pulp mill biorefinery in the energy system is investigated regarding 
potential benefits for mill operators and districts. Besides profitable selling prices of commodities, the emission reduction and self-
sufficiency potential of the different stakeholders are analyzed. 

Methods 
In the first step, solutions of the integrated system are generated. Then, promising configurations are analyzed regarding their 
implications for the stakeholders of the system.
Superstructure development and solution generation
The superstructure optimization of the integrated pulp biorefinery described by (Granacher et al., 2022) is extended with P2X and 
X2P options as well as CCUS technologies, and placed next to a residential district.  P2X and X2P include a Solide Oxide Electrolysis 
/Fuel cell (SOEC/SOFC) unit operation, as well as multiple thermo-chemical-based fuel production options from bark and black 
liquor, as elaborated in (Granacher et al., 2022). 

Closing the balance- the pulp industry as a prosumer in the energy system
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Abstract: This paper aims to analyze the potential of transforming pulp plants into integrated biorefineries, considering the 
conversion pathways of biomass-to-X, Power-to-X, and X-to-power as well as the capture and utilization of carbon dioxide, and 
operating them as part of a dynamic energy system subjected to fluctuations induced by renewable resources. 
A superstructure optimization model of the integrated system is developed and analyzed under a variety of scenarios forecasting 
resource availability, energy demand and availability and product demand.  For identified solutions, costs of internal flows between 
stakeholders of the system are derived, revealing that the mill operator, utility operator, and district are able to significantly 
improve their environmental impact at reasonable economic loads. 
From the mill operator’s perspective, the profitability of a configuration is largely dependent on the market profile of crude oil 
and electricity prices, while the mill’s carbon efficiency can be increased from 50% to up to 86%, profiting from carbon capture 
and utilization in fuel production and mineralization.  The emissions of the district can be reduced by up to 70% compared to 
non-integrated operation. 
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Figure 1: Simplified superstructure representation. 
Internal exchanges in the grey box are considered to 
be free of charge, everything that is exchanged with 
outside has a price.

CCUS includes carbon capture at all burner units in the superstructure using chemical absorption, sequestration and mineralization. 
The process units in the integrated mill biorefinery, consisting of the pulp mill, fuel production, CCUS, and P2X/X2P are connected 
via a steam network to allow for the exchange of heat and energy integration, as described in (Kantor et al., 2020). Mill and district 
are assumed to be able to exchange heat via a district heating network, as well as power and fuels; for everything that cannot be 
satisfied internally, external sources can be purchased. The temporal resolution of district demands for heating, electricity and 
transport, market prices, and impact factors are taken into account in the optimization formulation. Figure 1 summarizes the 
suggested superstructure.  The defined superstructure is used in a multi-objective optimization framework to generate solutions 
for a multitude of market and environmental scenarios, as previously described in (Granacher et al., 2022). 
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Figure 2: Required carbon taxes for system configurations to break even 
with the conventional operation, derived for direct (S1), indirect (S2), and 
direct and indirect (S12) emissions.

Optimization of internal cost
 An optimization problem is formulated that determines the cost for internal flows for the obtained configurations.  For this purpose, 
the cost each stakeholder sees in each configuration are derived as a function of the selling prices of heat, electricity, and fuels. 
The flowrates of internal exchanges are fixed in each configuration and the optimal prices of commodities are determined by a 
parameterized Mixed Integer Linear Programming (MILP) optimization problem, that minimizes the cost of the district while setting 
constraints on the cost of the utility and the mill operator. Besides fixing the prices of the internal exchanges, the optimization 
determines the configuration that is preferable for a given constraint optimization problem.

Results
When generating configurations of the integrated system using the superstructure formulation and optimization strategy described 
previously, multiple configurations are identified that perform economically better than the conventional, non-integrated operation 
of the system. Figure 2 shows the CO2 taxes that would be needed so that a certain configuration is as profitable as conventional, 
non–integrated operation of the system for direct (S1), indirect (S2) and direct and indirect (S12) emissions. Negative taxes indicated 
that a configuration is already more profitable than the conventional operation, at least on the system perspective.  However, while 
serving as a nice indication on emission reduction potential, the perspective of the system where internal flows are for free does 
not mirror the reality. Therefore, the optimization problem formulated for internal flows is used to derive preferable combinations 
of commodity cost. For the optimization of internal cost, the TOTEX of the mill operator is constraint to parameterized percentages 
of the TOTEX for conventional operation, while for the utility operator who operates a district heating network between the mill and 
the district, the payback period is parameterized.

Figure 3, (left) shows the TOTEX change the mill operator is subjected to, the cost per capita, and the payback period of the utility 
operator. Furthermore, Figure 3 (right) displays the required energy commodity prices if certain constraints on the stakeholder cost 
need to be met. Commodity prices stay well within the current market range, and emissions per capita can be reduced by up to 70% 
compared to non-integrated operations. 

Conclusion
In this work, synergies between an integrated pulp biorefinery and a nearby district have been analyzed. For the mill operation, 
significant emission reduction potential of biogenic carbon during pulp production by means of CCUS coupled with P2X and X2P 
and fuel production has been identified. For the integrated system considering the district demands, large shares of the fossil 
emissions of the district can be avoided by replacing fossil fuels with products from the integrated pulp biorefinery. Optimization of 
internal flows reveals that the integration is viable for all stakeholders, suggesting that not only environmental but also economic 
benefits could arise from the integration.
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Introduction
The ability of computer simulation software to mimic the real production process with sufficient accuracy has popularized their 
use in the modeling of chemical processes. However, the first principles models used in these simulators are often complex, and 
it may be challenging to estimate derivatives accurately (McBride & Sundmacher, 2019). During optimization, this can result in 
entrapment in local optima or failure to converge to a feasible point. To improve the numerical robustness of these first principles 
models, surrogate models have become popular solutions under two different approaches. The first approach is the generation of 
a model involving a direct mapping of the input-output relationship between the degrees of freedom and the objective function, 
known as a black-box surrogate model. These models present limitations, including poor extrapolation capabilities and a lack of 
interpretability, which have led to the development of models combining black-box and mechanistic equations, known as hybrid 
surrogate models. For example, Kahrs & Marquardt (2007) generated a hybrid model to maximize the ethylene glycol yield using 
Artificial neural networks (ANNs) complemented with mass balances and vapor-liquid equilibrium equations. Quirante & Caballero 
(2016) substituted complex units of a sour water stripping plant with kriging surrogate models to yield a hybrid model for process 
optimization. These hybrid models are hard to globally optimize, despite some recent work in the field (Schweidtmann & Mitsos, 
2019). Alternatively, analytical surrogates without any predefined canonical form can be built using symbolic regression, which 
attempts to find an analytical equation describing the given data and the values of its parameters without assuming any predefined 
model structure. The use of symbolic regression to generate a closed-form analytical expression that can be combined with first-
principles equations could potentially improve the numerical robustness of the optimization step by facilitating the application 
of derivative-based global solvers to the analytical hybrid model. Recently, Cozad & Sahinidis (2018) introduced an elegant MINLP 
formulation for symbolic regression which relies on the use of deterministic solvers known to lead to large CPU times. Alternatively,  
Guimerà et al. (2020) introduced the Bayesian machine scientist (BMS), which generates closed-form analytical expressions using 
Bayesian probability and Markov chain Monte Carlo (MCMC) sampling. For the first time, the BMS is used in this work for the hybrid 
surrogate modeling and optimization of process flowsheets.

Methodology 
A propylene glycol production process is simulated in Aspen Plus® v11, which consists of a single continuous stirred tank reactor 
(CSTR) and a distillation column. The calculations are implemented in an Intel® Core i7-10700 CPU @ 2.90 GHz computer. The first 
step is to use Latin hypercube sampling (LHS) to generate values for the degrees of freedom of the process units within allowable 
ranges. Python 3.7 sends these values to Aspen Plus® and reads the required outputs. These inputs and outputs are then used to 
construct surrogate models using the BMS. Here we explore three different approaches. The first method (BB) is to construct one 
black-box surrogate model that calculates the unitary production cost (in $/kg), i.e., the objective function (OF) to minimize. The 
second method (H1) is to construct separate surrogate models to predict the output variables of the CSTR and the distillation 
column, complementing them with mass balances of the flowsheet (e.g., the stream mixer and recycle stream), resulting in a hybrid 
surrogate model. The third method (H2) uses the same surrogate models of the CSTR and distillation column generated in H1 
and inserts them into the Aspen Custom Modeler® (ACM) v11, thus substituting only these two units in Aspen Plus® to generate a 
hybrid surrogate model. The optimization of BB and H1 is carried out in the algebraic modeling system, GAMS v35.2.0, using BARON 
(Tawarmalani & Sahinidis, 2005) v21.1.13, while the in-built optimizer in Aspen Plus® is used for H2. The optimal OF obtained from 
the three methods and the deviation in the OF between the surrogate models and the rigorous simulation is computed by inserting 
the optimized design variables back into the rigorous simulation. The termination criteria set for BARON are a maximum CPU time 
of 14,400 seconds and a relative optimality gap of 10-9. 
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Abstract: Surrogate formulations have become very popular to optimize complex process simulations, alone or combined with 
first principles within the framework of hybrid modeling. However, conventional surrogates like neural networks or Gaussian 
processes, are hard to globally optimize, particularly when combined with mechanistic equations in a hybrid model. Alternatively, 
analytical surrogates could be built using symbolic regression, which attempts to find an analytical equation explaining given 
data, giving rise to a fully analytical hybrid model integrating first principles and surrogate equations. Such a hybrid model could 
then be locally or globally optimized using standard optimization algorithms that would have access to accurate derivatives 
based on the analytical hybrid model.  Following these ideas, here we explore the use of Bayesian symbolic regression to build 
hybrid analytical surrogate models, finding that this approach outperforms fully black-box models and the standard optimization 
tools available in Aspen Plus®.
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Results and Conclusions
Table 1 shows the numerical results obtained from the optimization of the three methods:

Table 1. Results obtained from the three methods, where the optimal solutions are evaluated in Aspen Plus®

Method
C P U O F O F

time (s) Surrogate 
model ($/kg)

Aspen Plus® 
($/kg)

Deviation
(%)

BB 14400.00 3.52 3.55 -0.77

H1 0.20 3.56 3.55 0.45

H2 5.00 3.61 3.60 0.11

The deviation between the optimal OF values from the surrogate model and rigorous simulation is less than 1% in all three cases. 
However, when the actual values of the OF are compared, it can be seen that H2 performs 1.41% worse than the other methods, 
while BB and H1 return the same value (i.e., 3.55 $/kg). Comparing BB and H1 further, it is observed that the former does not close 
the optimality gap fully, while the latter does so in just 0.2 seconds. Thus, the hybrid surrogate model (H1) in GAMS returns the 
global minimum of the hybrid model in only 0.2 seconds, with a relative optimality gap of 10-9, and a 0.45% deviation between the 
surrogate model and rigorous simulation. 
Therefore, the hybrid surrogate model (H1), consisting of surrogate models complemented with mass balances and optimized in 
GAMS, presents the best performance. Overall, this work shows that hybrid surrogate modeling based on Bayesian learning can 
effectively improve the optimization performance of process flowsheets.
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Introduction
Fluid catalytic cracking (FCC) is the most economically important refinery operation currently in use. The process contributes about 
35% of total gasoline production, as well as other valuable refined products. The process itself is markedly complex. FCC units make 
use of high temperatures, as well as specialized catalysts which continuously circulate, to break down complex hydrocarbons into 
simpler compounds.
To tackle the complexity of the FCC process, various approaches to modeling have been proposed. The earliest papers in FCC 
modeling relied on lumped kinetics and is widely used to this day. In lumped kinetic (LK) models, feed and product components 
are grouped into pseudo-components by means of clusters. Criteria for sorting feed or product components into lumps (boiling 
point range, chemical structure, etc.) may vary. Feed lumps are connected to product lumps by arrows, which represent cracking 
reactions and set up the basis for equation-based analysis. Models are derived from first principles and simplified with the use of 
empirical assumptions. Other than simplifying the process, LK models offer important means to both understand and manipulate 
the FCC process. Further model reduction is always possible but at the peril to compromise understanding of the process and 
model accuracy. 
Data-driven models are able to abstain from first principles as they apply systems analysis to infer input-output relationships using 
multi-parametric models that range from simple linear models to deep learning developments trained out of data from daily 
operations. Such models can be used to monitor the FCC performance in design, off-line and on-line control applications. They 
are less demanding computationally, can make full use of plant data and are reported to monitor performance quite accurately. 
However, they fail to offer proper insights for the process and are prone to significant errors whenever in use outside the particular 
remit of data space they have been trained for.

Motivation and approach
There is an apparent motivation to upgrade first-principle-based models towards hybrid models that make systematic use of 
operational data, thus combining merits of available approaches currently in use. Rather than directly inferring input-output 
relationships, data embedding may infer model parameters used in the first-principle-based models. Training could alternatively 
use a superset of data comprised by curated simulations and operational data. Data include then: (a) sets of curated (simulation) 
data from constitutional equations of first-principle based models in the FCC; and (b) operational data from the process. A simple 
diagram for the data flows is illustrated in Figure 1.

Data embedding and hybrid modeling for industrial fluid catalytic cracking

Dimitrios Blitas, Antonis Kokossis 
School of Chemical Engineering 
National Technical University of Athens, Greece

Abstract: Fluid catalytic cracking is a both a critical and complex operation for refineries. Furthermore, the nature of the process 
(complex feedstock, complex sets of reactions and products) bears similarity with the complexity of emerging technologies in 
bio-renewables such as pyrolysis or hydrothermal liquefaction. FCC models are either linear and bilinear models adapted by 
regression or data-driven models. Instead, the paper explores machine-learning technologies to combine first-principle based 
models by embedding operational data from a real process. This artificial data, derived from equation-based models acts directly 
on neural network parameters, steering them in the right direction without the formation of new or updated input-output 
equations. The embedding provides for a systematic use of measurements form the plant while the first-principle based models 
offer a basis to explain the performance of the model. Early results illustrate very satisfactory accuracy, faster times and the 
opportunity to reduce the complexity of the process.
Keywords: Fluid catalytic cracking, neural networks, data embedding

Figure 1. Application of data embedding on FCC model
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Table 1: Proposed model input and output variables

Input variables Output (yields)

Feed volume flow (m3/h) Slurry

Feed temperature (oC) LCO

Reactor temperature (oC) Total Naptha

Regenerator temperature (oC) Coke

Regenerator air flow (kNm3/h) LPG

Sour Gas

Methodology and implementation
The approach addresses the importance of merging data from two different resources (plant data, curated data) assessing the 
potential of the merged approach to improve the accuracy of the LK model as well as the ability of the data-based model to 
generalize outside the remit of the training set used.

The methodology involves a staged approach that is applied as follows: (i) a curated model is developed based on a LK method 
(deterministic model) to produce datasets ds1, and predict the FCC output, (ii) data streams ds2 from the real process are increasingly 
merged and hybridize ds1 to predict (neural network) new FCC outputs, and (iii) the process continues measuring the level of 
improvement achieved as each stage by reporting improvements in the accuracy of predictions for each one of the output streams 
of the system. Aspen HYSYS was used to produce an LK model; the ANN was developed in Python: ds1 consists of 55 rows of data, 
generated by use of the case study function in HYSYS. ds2 consists of 70 rows of operational data from the HELPE FCC unit at the 
Aspropyrgos refinery, of which 15 were randomly selected to be used as the test set and 55 as the initial training set. Data from ds2 
was introduced in increments of 10% to form the hybridized ds1, which ultimately consisted of equal parts real and curated data. 
The ANN underwent 100 instances of training at each step, of 1000 epochs each. The best results achieved through training at each 
10% step were used as the basis for analysis.

Results and conclusions
Data embedding significantly improved the prediction accuracy 
of the initial model (Fig.2). In the case of naptha and LPG average 
prediction errors were markedly reduced (Table 1). Good predictions 
were already achieved at 10% hybridization for certain products and 
rapidly improved at 20% and beyond for the overall model.

Table 2: Relative error of predictions at various ratios of data embedding

Relative
Pred. error 0% 20% 50%

Naptha 0.032 0.023 0.022

LPG 0.054 0.051 0.022
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Figure 2.   Model fit diagrams for naptha and LPG product 
(top-0% hybridization, bottom-50% hybridization)
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Introduction
Determination of a probability density function (PDF) by using moments is an active research area in chemical and process 
engineering. Although various moment-based methods have been proposed in the literature, in all these methods only a finite 
number of moments associated with the real distribution are ultimately determined. A more recent procedure was proposed by 
Munkhammar et al. (2017) for estimating N-order polynomial approximation of a PDF based on N statistical moments. However, 
the procedure has certain limitations such as experimentally determining the interval and the degree of approximation polynomial 
where the convergence is best, and using the goodness-of-fit test which is not always reliable (Goldman and David, 2018) as a 
stopping criterion. This leads to increase in error, rise in the number of arithmetic operations and the loss of time. The above-
mentioned shortcomings in the moment-based determination of a PDF are the primary motivation of this study.
This study focuses on estimating interpolation approximation to a complex integro-differential population balance equation (PBE). 
To overcome the above-mentioned shortcomings, a procedure based on the reconstruction of a distribution knowing only a finite 
number of its moments by Lagrange interpolation is proposed. As an example, two cases of Smoluchowski coalescence equation 
(SCE) with both linear and product kernel (Aldous, 1999) whose solutions are probability density distributions has been solved 
using the approach of Munkhammar et al. (2017) and the approach proposed in this study.
Case 1: Smoluchowski coalescence equation (SCE) with linear kernel from Aldous (1999)

Improvement of probability distribution estimation using method of moments with 
Lagrange interpolation approach

Meltem Turana, Joakim Munkhammarb, Abhishek Duttac 
aDepartment of Mathematics, Ege University, Izmir 35180, Turkey  
bBEESG, Department of Engineering Sciences/Uppsala University, Uppsala, Sweden 
cDepartment of Chemical Engineering, Izmir Institute of Technology, Gulbahce Campus, Izmir 35430, Turkey

Abstract: Moment-based determination of a probability density function (PDF) is widely used in chemical and process 
engineering applications. In this study, a procedure is suggested for estimating interpolation approximation to unknown (or 
known) PDFs. The procedure is based on the reconstruction of a distribution knowing only a finite number of moments using 
Lagrange interpolation. To show the improvement through this approach, test cases have been solved with complex integro-
differential equation such as Smoluchowski coalescence equation (SCE) with both linear and product kernels. The results are 
then compared using the polynomial approach for estimating probability distributions using moment-based determination and 
analytic solutions where possible.
Keywords: method of moments, probability density function, Lagrange interpolation, population balance equation

Fig. 1. Approximate solutions with the analytic solution (blue) obtained by polynomial approach (red) 
and Lagrange interpolation approach (black) with t = (a) 0.4, (b) 0.7 and (c) 1
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Fig. 2. Approximate solutions with the analytic solution (blue) obtained by polynomial approach (red) 
and Lagrange interpolation approach (black) with t = (a) 0.4, (b) 0.7 and (c) 1.

Case 2: Smoluchowski coalescence equation (SCE) with product kernel from Aldous (1999)

Table 1. Root mean square error (RMSE) values for the two cases used in this study using polynomial approach,  
Lagrange interpolation approach with the corresponding analytic solution.

Cases
RMSE using 
polynomial 
approach

RMSE using 
Lagrange 

interpolation 
approach

Improvement 
(%)

Smoluchowski coalescence 
equation linear kernel 
(t=0.4, 0.7, 1)

0.1930
0.1517
0.0868

0.0687
0.0922
0.0860

64
39
0.9

Smoluchowski coalescence 
equation product kernel
(t=0.4, 0.7, 1)

23.1967
5.1011
0.0642

1.7096
0.1314
0.0534

> 90
> 90
16

Conclusions
As seen in the results, the modified Lagrange interpolation approach shows an improvement from the polynomial approach for 
narrow distributions. For the SCE, there is a clear improvement using the modified approach by 64 % for linear kernel and by 90% 
for product kernel. This is mainly because equal distance points are used in the polynomial approach while Chebyshev polynomial 
roots are used in Lagrange interpolation approach. It is also concluded that the polynomial approximation shown in this study is a 
reasonable fit to the analytically obtained results for N = 11. 
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Comparative Analysis and Improved Scheduling Model for MULTI-STAGE 
Biopharmaceutical Processes

Vaibhav Kumar, Munawar A. Shaik 
Department of Chemical and Petroleum Engineering, College of Engineering 
UAE University, Al Ain, United Arab Emirates

Abstract: In this study, we present a general analysis of relevant literature models for continuous manufacturing of 
biopharmaceuticals, along with a critical discussion on some of the deficiencies that were observed. The proposed model extends 
an earlier unit-specific event-based model with additional features including modeling of shelf-life and minimum campaign 
length to continue over multiple events, in contrast to the literature models. We also present different scenarios based on 
whether early delivery of products is allowed or not.  These improved features lead to better modeling, and the performance of 
the proposed model is evaluated on selected examples based on industrial data adopted from the literature giving higher profit. 
Keywords: Mathematical modelling, Optimization, Scheduling, Biopharmaceuticals.

Introduction
The biopharmaceutical industry has been developing significantly with growing demand for therapeutic drugs. The concerned challenges 
associated with drug development and cost-effective manufacturing require a decision support system for improving resource utilization. Several 
deterministic and stochastic/evolutionary approaches have been reported in the literature to schedule a multiproduct facility for the batch and 
continuous manufacturing of biopharmaceuticals using discrete-time and continuous-time representations. 
Lakhdar et al. (2005) presented a midterm planning model based on discrete time representation for continuous manufacturing of 
biopharmaceuticals. Kabra et al. (2013) developed a unit-specific event based model, while Vieira et al. (2016, 2017) proposed global-event based 
model for the same problem including maintenance scheduling with performance decay. Kumar et al. (2022) extended the work of Kabra et al. 
(2013) and proposed modifications to remove several model inconsistencies arising in the literature such as: no initial setup time (Kabra et al., 
2013), real-time storage violation (Lakhdar et al., 2005; Vieira et al., 2016; Vieira et al., 2017), early product delivery (Lakhdar et al., 2005; Kabra et 
al., 2013; Vieira et al., 2016; Vieira et al., 2017), lack of adequate mapping in the upstream and downstream tasks (Lakhdar et al., 2005; Kabra et al., 
2013; Vieira et al., 2017), incomplete sequencing of storage tasks (Lakhdar et al., 2005; Kabra et al., 2013; Vieira et al., 2016; Vieira et al., 2017), and 
overestimated objective values (Lakhdar et al., 2005; Kabra et al., 2013; Vieira et al., 2016; Vieira et al., 2017). The present study extends the work 
of Kumar et al. (2022) by improving their model to address several additional features including modeling of shelf-life and minimum campaign 
length to continue over multiple events, with different scenarios based on whether early delivery of products is allowed or not.

Modeling 
We present different scenarios based on whether early delivery of products is allowed or not. A three-index binary variable is used for handling 
initial setup time in each unit. Four index binary variables are introduced to handle modeling of shelf-life and minimum campaign length to 
continue over multiple events, in contrast to the literature models. The proposed modeling equations are not provided here due to limited space 
for an extended abstract but will be covered during the conference presentation.

Results and Discussion
The performance of the proposed model is evaluated for a multi-stage 
biopharmaceutical manufacturing facility with a finite and unknown 
product delivery rate and based on whether early delivery is allowed or 
not allowed. 
The example is taken from Lakhdar et al. (2005), where a two-stage 
biopharmaceutical manufacturing facility produces three mammalian 
cell products with a multi-period demand specified over 360 days. The 
resulting Gantt chart is shown in Figure 1.

Figure 1.   Gantt chart of the 
proposed model
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The model statistics and the profit structure are reported in Tables 1 and 2 and compared with the literature. The proposed model has a larger 
problem size in terms of the number of variables and constraints due to the enhanced modeling of additional features. The profit value obtained 
using the proposed improved model is 460.67 rmu for the case when early delivery is not allowed, unlike most of the literature models which 
allowed early delivery of products, in contrast to the original problem requirement, leading to lower storage costs and a higher profit, which is not 
realizable due to the restriction on early delivery.

Table 1. Model statistics

Model statistics Kumar et al. 
(2022)

Proposed 
work

Constraints 4538 7119

Continuous 
variables 638   847

Binary variables 229 1365

Profit (rmu)   491.22   460.67

                        
Table 2. Profit structure

Profit structure 
(rmu)

Kumar et al. 
(2022)

Proposed 
work

Sales revenue 680 680

Manufacturing cost 136 136

Changeover cost 10   10

Initial setup cost 4 4

Storage cost   38.78 69.27

Late delivery cost 0 0

Waste disposal cost 0 0

Profit 491.22 460.67
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Integrating environmental impacts into the screening of metal-organic frameworks for 
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Abstract: Novel materials such as metal-organic frameworks (MOFs) provide access to an almost unlimited chemical design 
space and thus have great potential to improve carbon capture processes. Since carbon capture aims to mitigate climate change, 
technologies need to ensure environmental benefits. However, proper life-cycle assessment (LCA) is challenging for novel 
materials that mostly exist only in silico. This work, therefore, presents a framework for high-throughput screening of MOFs for 
carbon capture based on their environmental performance. To estimate the environmental impacts of MOFs at an early design 
stage, we developed a predictive LCA model covering the synthesis, use, and disposal of the MOFs. A temperature-vacuum swing 
adsorption process is considered with a detailed accounting of utilities and economics. We use the predictive framework to assess 
the environmental impacts of hundreds of MOFs in high-throughput screening for carbon capture and storage from a natural gas 
combined cycle power plant in Great Britain. The results highlight that material rankings differ enormously depending on the 
assessment criterion. The high-throughput screening allows us to derive guidelines for developing sustainable MOFs.
Keywords: CCS, adsorption, environmental impacts, life-cycle assessment, MOF.

Introduction 
Carbon capture is crucial for climate change mitigation by enabling both storage and utilization of CO2. Promising technologies for carbon 
capture are adsorption processes that rely on solid adsorbents to separate CO2 from flue gases or air. The vast chemical design space allows for 
selecting the best adsorbent but also renders the selection challenging. Today, new materials for CO2 adsorption are commonly evaluated in 
high-throughput screenings based on their material properties or energy requirements (Farmahini et al., 2021). However, to identify sustainable 
materials, the environmental impacts must additionally be considered during the entire life cycle of the material. 
In pioneering work, Hu et al. (2021) presented a screening framework integrating life cycle assessment (LCA) for 50 adsorbents. The LCA combined 
inventory data from the literature with proxy data. The results highlight the importance of integrating environmental impacts into screening 
adsorbent materials for carbon capture. However, because the screening framework relies on literature LCA data for each material, applying the 
framework to more extensive adsorbent databases is challenging. 
Here, we present a framework for high-throughput screening of metal-organic frameworks (MOF) for carbon capture, considering a predictive LCA 
model to assess materials based on their environmental impacts.

Method
Our high-throughput screening framework integrates predictive LCA with detailed models of the process and techno-economic analysis (TEA), 
and Grand-Canonical Monte Carlo simulations. We focus this study on MOFs, promising materials to reduce energy requirements, cost, and 
environmental impacts. Due to limited data availability for LCA in the early design phase, we developed a predictive LCA model that estimates the 
environmental impacts of an adsorbent-based carbon capture process solely from the foreground data of the capture process and the structure of 
the material. We perform a cradle-to-gate assessment to capture 1 kg of CO2 that thus includes the environmental impacts of the carbon capture 
plant, the materials synthesis, and disposal. Due to the diversity of MOF synthesis, we have developed a simplified, predictive LCA model for MOF 
synthesis based on proxy data from the literature for solvent and organic linkers. 
The foreground data of the LCA model is calculated using an equilibrium shortcut model for a temperature-vacuum swing adsorption process 
combined with detailed models for sizing, utility systems, and costing (Charalambous et al., 2022). The adsorption thermodynamics required 
for the process modeling are calculated based on molecular simulations. Beyond material, process, and economic key performance indicators 
(KPI), the overall framework assesses adsorbent materials for carbon capture based on their environmental impact (e.g., climate change or metal 
depletion) using the Environmental Footprint 3.0 (EC-JRC, 2022).

Results
Our high-throughput screening framework is applied to screen over 900 MOFs for CO2 capture from the flue gas (4 mol-% of CO2) of a natural 
gas combined cycle power plant in Great Britain. The crystal structures are a subset of the CoRE MOF open-source database (Chung et al., 2019). 
 Over 100 MOFs outperform an amine-based benchmark in almost all environmental impact categories, including climate change (up to 53% 
lower) but also “material resources: metals/minerals” (up to 61% lower) (Figure 1). Generally, the material rankings strongly depend on the 
assessment criterion. For example, rankings based on LCA criteria strongly differ from rankings based on selectivity, a material KPI commonly used 
in the literature for material selection. The results highlight the importance of assessing environmental impacts in material selection frameworks 
to ensure overall optimal solutions. Our screening results can guide the development of more sustainable MOFs, e.g., replacing a rather rare metal 
in a promising MOF with an abundant metal with similar thermodynamic performance.
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Conclusions
This work presents a high-throughput screening framework to screen MOFs for material, process, TEA, and LCA criteria. Our screening of over 900 
MOFs identifies materials that outperform an amine-based benchmark process in environmental impacts. The results highlight that the material 
rankings can enormously differ depending on the assessment criterion. Thus, a MOF selection based on material KPIs, e.g., selectivity, can be 
misleading regarding environmental impacts.
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Figure 1: Materials screening for LCA KPI climate 
change and material resources: metals/minerals 
(MR:MM) vs. the material KPI selectivity and an 
amine-based benchmark process (MEA).
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Molecule design beyond group counts – Integrated design of processes and 
molecule superstructures
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Abstract: Integrated molecular and process design optimizes process variables together with molecules as an additional 
degree of freedom. The integrated design needs to represent the molecule in a machine-readable way that can be operated on 
by an optimization algorithm. For this purpose, group-contribution (GC) methods have been established as property models in 
molecular design. Thereby, the molecular degrees of freedom are group counts. However, the group counts omit information 
about the structure of the molecule and thus limit the molecular detail available during design. In this work, we present a graph-
based molecular representation that encodes the full structure of the molecule during optimization. This so-called molecule 
superstructure unlocks property prediction methods with higher fidelity than GC methods for integrated molecular and process 
design while still allowing the use of gradient-based optimization algorithms. The resulting framework is applied in a case study 
to design the working fluid for an organic Rankine cycle using the heterosegmented gc-PC-SAFT equation of state as property 
prediction model. The molecular superstructure representation is shown to enable the efficient integration of advanced property 
models into molecular design.
Keywords: CAMPD, molecular design, PC-SAFT, group-contribution method

Introduction 
Many industrial processes require auxiliary materials that are not part of the feed or product streams but still influence the process efficiency 
significantly. An example is the working fluid in a heat pump or organic Rankine cycle. Likewise, separation processes, such as gas absorption, 
require choosing a solvent. The identification of a suitable auxiliary material is often key to process performance. 
Suitable auxiliary materials can be identified using computer-aided molecular and process design (CAMPD) (Papadopoulos et al., 2018). The 
goal of CAMPD is to determine the optimal molecule with respect to a target function and constraints specified in a process model. To make 
the molecular design problem solvable, the structure of the molecules needs to be featurized, i.e., transformed into a machine-readable format. 
Molecules are commonly featurized by splitting them into functional groups. Properties of the molecules are then calculated from the number of 
occurrences of each group. These so-called group contribution methods can directly estimate properties like critical data but also parameters for 
equations of state like PC-SAFT. However, the most common first-order group contribution methods cannot account for bonds or higher-order 
structures in the molecule. 
Therefore, in this work, we present a CAMPD method based on molecule superstructures that describe the entire molecular graph from a small 
input of integer variables. The approach can be coupled with fast, gradient-based optimization algorithms and reduces the combinatorial 
complexity of the molecular design problem so that it can be used together with nonlinear process models. With the presented approach, we use 
for the first time the heterosegmented gc-PC-SAFT equation of state in an integrated molecular and process design. Sauer et al. (2014) showed 
that the heterosegmented approach is more accurate than the homosegmented GC method. The proposed method is demonstrated for the 
integrated design of an organic Rankine cycle (ORC) to assess the capability of the method. 

Molecule Superstructures 
Molecule superstructures represent molecules as graphs in which every node is associated with a non-hydrogen atom and a binary structure 
variable. The binary structure variable indicates whether the atom is part of the actual molecule or not. An example of a small molecule 
superstructure is shown in Figure 1.

Figure 1.   The four valid molecules that can be represented by an alcohol/ether superstructure of size 3 
and their corresponding structure variables.
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The structure variables can be translated to group and bond counts to parametrize property models like the heterosegmented gc-PC-SAFT 
equation of state. Linear structural constraints guarantee that the found molecules are fully connected and unique with respect to symmetries. A 
key feature of the molecule superstructure is that the structure variables can be relaxed, i.e., the model produces meaningful results for structure 
variables that vary continuously between 0 and 1. This relaxation allows the use of fast gradient-based optimization algorithms.

Case Study: Organic Rankine Cycle
The proposed CAMPD method based on molecule superstructures is applied to identify the optimal working fluid for a small-scale high-
temperature organic Rankine cycle (Lampe et al., 2019). A ranking of the 50 most promising working fluids is calculated by repeatedly solving the 
CAMPD problem while disallowing already found solutions via integer cut constraints.
A comparison with the homosegmented group contribution PC-SAFT model used in previous studies (see, e.g., Schilling et al., 2017) shows 
that for both property prediction methods propanal is identified as the working fluid leading to the highest net power output for the given 
operation conditions. For the remaining molecules in the ranking, the order varies between the two models but the difference in net power is 
small, and many molecules appear in the top 50 for both models. For the fluids in the ranking, the process optimization is repeated using PC-SAFT 
with parameters fitted to individual components. For the molecules found in this study, both group contribution methods compare well to the 
reference calculations.

Conclusions
The molecule superstructures introduced in this work enable gradient-based CAMPD using high-fidelity property prediction methods by 
considering the full structural information of molecules during the design. The output of the introduced CAMPD approach is the full molecular 
graph which can be represented, e.g., as a SMILES code. Therefore, the (possibly ambiguous) translation of group counts to structures is avoided.
For the first time, the heterosegmented gc-PC-SAFT equation of state is used as a property prediction method in CAMPD. While the benefits 
have been modest for the studied pure component design, we regard the heterosegmented group contribution models particularly promising 
for mixtures, because these GC models describe interactions between segments rather than entire molecules and hence, corrections for unlike 
segments on different molecules can be included directly in the perturbation terms. With the extension to mixtures in mind, the proposed 
molecule superstructure optimization strategy can contribute to increasing the accuracy of property prediction methods used in integrated 
molecular and process design.
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Abstract: Magnetophoretic microfluidic devices (MMDs), which exploit the outstanding properties of magnetic separation, 
magnetic beads, and microfluidics, offer promising possibilities to be used in downstream processing of target products. 
From the different MMDs, it has been demonstrated that quadrupole magnetic sorters (QMSs), which consist of an annular 
channel with quadrupolar-oriented permanent magnets, exhibit a notably enhanced performance compared to Y-Y shaped 
microseparators, which comprise a rectangular channel with a single permanent magnet. Despite their great potential, these 
QMSs need to be further optimized since the processing of relatively high flow rates has only been achieved for completely 
retrieving micron-sized beads. Nevertheless, the unique properties of magnetic nanoparticles, such as their high specific surface 
area, call for the development of magnetophoretic microseparators able to capture them while treating high flow rates. In this 
context, we propose the computer-aided optimization of QMSs, using an experimentally validated computational fluid dynamics 
(CFD) numerical model, by increasing the magnetic force applied to the beads via changing the channel diameter, as well as 
the maximum magnetic field produced by the quadrupolar-oriented magnets. Overall, this study highlights the improved 
performance of QMSs and foresees promising possibilities of these magnetophoretic microseparators. 
Keywords: CFD, Magnetophoretic microfluidic devices, Magnetic separation

Introduction 
The use of magnetophoretic microfluidic devices (MMDs) for retrieving magnetically-labelled compounds from complex media has attracted great 
attention. This fact stems from the unique benefits that the coupling of magnetic separation, microfluidics and magnetic beads offers. Hence, the 
design of MMDs has been the focus of intense research in order to develop systems that efficiently retrieve the target products. (Gómez-Pastora 
et al., 2017) Particularly, interest has been devoted to the design of MMDs that provide complete bead recovery while processing relatively high 
flow rates, since the reduced dimensions of microchannels causes that they are only able to process small flow rates. (González-Fernández et al., 
2020; González-Fernández et al., 2021)
Different strategies have been pursued in the literature to recover the target compounds at high volumetric throughputs. It has been demonstrated 
that increasing the driving force for the separation, that is the magnetic force exerted on the target compound-bead complexes, represents an 
attractive strategy. (González-Fernández et al., 2020; González-Fernández et al., 2021) In this context, the performance of two typically used MMDs 
for particle retrieval, namely quadrupole magnetic sorter (QMS) and Y-Y shaped microseparator, that have similar geometrical features but differ in 
the magnetic force applied to the particles, has been compared. Particularly, QMSs consist of an annular channel with a quadrupolar orientation of 
the permanent magnets, whereas Y-Y shaped microseparators, which represent the standard configuration, comprise a rectangular channel with 
a single permanent magnet. (González-Fernández et al., 2021)    
Despite their promising possibilities for recovering target products, QMSs need to be further optimized since the processing of relatively high flow 
rates has only been achieved for completely retrieving micron-sized beads. Nevertheless, reducing the beads dose that is required for the recovery 
of the target solute represents a potential strategy for meeting process intensification and reducing the process cost. (González-Fernández et 
al., 2021) In this regard, the higher specific surface area of magnetic nanoparticles, which enhances the adsorption of the target compound on 
the bead surface, calls for the development of MMDs able to capture magnetic nanoparticles while processing high sample flow rates. (Gómez-
Pastora et al., 2017)
Ongoing research
We propose the computer-aided optimization of QMSs by changing the channel diameter, as well as the maximum magnetic field produced by 
the quadrupolar-oriented magnets in order to increase the magnetic force applied to the beads, thus enabling the recovery of smaller particles. 
These strategies for increasing the driving force for particle retrieval derive from the work of Gómez-Pastora et al. (2022), who demonstrated how 
the magnetic field gradient inside the QMS is influenced by the column diameter and the quadrupole magnetic field applied on the separator 
walls (see Figure 1). For conducting this research, our experimentally validated computational fluid dynamics (CFD) numerical model, which is 
solved in FLOW-3D, can be employed. Briefly, this model predicts bead trajectory through an Eulerian-Lagrangian approach and considers the 
dominant forces (i.e., magnetic and hydrodynamic forces) acting on the beads. The magnetic force is calculated in an external Fortran subroutine 
compiled in Visual Studio, that is linked to the FLOW-3D hydrodynamics solver during running. (Gómez-Pastora et al. 2018; González-Fernández 
et al. 2021)
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Figure 1.   Dependence of the 
magnetic field gradient inside a QMS 
with the column diameter and the 
quadrupole magnetic fields applied 
on the separator walls (adapted from 
Gómez-Pastora et al. 2022)

Conclusions
In light of the above-mentioned insights, this study emphasizes the improved performance of QMSs and provides guidelines for designing more 
efficient QMSs (i.e., those able to recover smaller beads). Additionally, promising possibilities of QMSs for nanoparticle retrieval are foreseen.
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Screening and modeling tools for optimal design of safe and sustainable chemicals
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Abstract: Ex-ante consideration of safety and sustainability aspects at the early stages of material or process design, promotes 
the concept of safe and sustainable by-design (SSbD) and reduces the need to mitigate impacts on human health and the 
environment in later product development stages. Computer Aided Molecular Design (CAMD) tools can be used to screen for 
SSbD chemicals and implement strategies for sustainability.
Keywords: LCA, Computer Aided Molecular Design, optimization, QSPR, Group Contribution models.

Introduction 
The European chemicals strategy for sustainability aims to consider safety and sustainability aspects as early as possible product development 
design chain [1]. The resulting substances, materials, products or processes are safe and sustainable by-design (SSbD), reducing the need for 
retroactive measures to mitigate impacts on human health and the environment in later product development stages [2]. 
The concept of SSbD integrates safety, circularity and functionality throughout the entire life cycle, and minimizes the environmental footprint. 
The EC-JRC proposed implementation strategies for SSbD, with focus on safety and environmental dimensions, and the availability of tools to 
assess life-cycle impacts on climate change, resource use, ecosystems and biodiversity. Social and economic dimensions were not overlooked, on 
the contrary, occupational risks can be considered under the social risks [3]. CAMD tools can apply a preliminary screening to reverse-engineer 
molecular configurations featuring optimal or/and desirable properties and process conditions. This could also include safety and sustainability.

Methodology
The CAMD optimization tool considered here was originally demonstrated on the design of refrigerants [4] and separation-enhancing organic 
materials [5]. The optimizer was extended and used extensively since then on a variety of material design applications, including solvents for 
reactive separation processes [6], organic Rankine cycle [7], CO2 capture [8] etc. Applications of the above CAMD optimizer are only limited by 
the availability of Quantitative Structure-Property Models (QSPR), like group-contribution (GC) models, for fast and efficient property predictions. 
A general statement to describe the problem of optimal design of novel materials as considered here would be:

Optimize {performance} = f{structure}
Subject to {properties} = f{structure} &
{process conditions} = f{properties}

Safety and sustainability can be considered ex-ante, in addition to the functionality requirements, if Life Cycle Analysis (LCA) or Health, Safety 
and Environment (HSE) indicators are evaluated using materials in databases [9] or appropriate QSPR-type models able to consider any given 
molecular structure [10]. This work integrated the GC-LCA models developed by [10] in the CAMD optimization tool. These GC models are for 
the following climate change indicators: Global Warming Potential (GWP), Cumulative Energy Demand (CED) and EcoIndicator 99 (EI99). Safety 
features were also considered in the property constraints.

Results
The CAMD optimizer was then applied to the design of safe and sustainable phase change materials (PCMs) and extractive fermentation solvents 
for the production of biofuels. 
For the design of PCMs, the optimizer was linked to a simple metamodel predicting the total annual required heat for a given residence. The 
applied constraints on the thermo-physical properties were based on the properties of materials traditionally used for such applications. The 
obtained results were either similar or outperformed traditional materials in terms of functionality. However, since the compliance to HSE/LCA 
requirements was integrated in the optimal search, the obtained designs were additionally SSbD [11].
The extractive fermentation process combines fermentation with a primary liquid–liquid extractive separation stage to increase the ethanol 
productivity. Though promising, the process is still not practical for industrial application, also due to the lack of suitable extraction solvents. 
The optimizer was linked to a simple simulator to model the process performance of the candidate designs and improve their assessment. The 
obtained designs provided significant insights on the kind of molecular structures that satisfy the process objectives and constraints, as well the 
desired requirements for the solvent sustainability and safety [12].
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Conclusions
This paper discusses the current strategies for sustainability and how they can be implemented using available CAMD optimization tools to 
propose designs, which are also safe and sustainable, at the early stages of material / process development. The optimal search can consider 
various HSE/LCA criteria, depending on specific needs and the availability of GC models for the evaluation of relevant indicators. In total, the 
obtained material designs for two case studies feature improved functionality, safety and sustainability. This work also demonstrates that the 
proposed approach can promote novel processing options, not practically feasible using tabulated materials. 
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Introduction 
The increasing demand for energy and the scarcity of freshwater resources confront researchers with the challenge of finding ways to conserve 
energy in water desalination systems. High energy consumption from fossil fuels and electricity is a problem for traditional desalination systems 
such as multi-stage flash (MSF), Reverse Osmosis (RO), and Multi-effect Distillation (MED), which all add to climate change and exacerbate ecological 
threats (Do Thi et al., 2021; Olabi et al., 2020). Additionally, these systems involve expensive operating costs and require regular maintenance (Ghazy 
et al., 2022). The adsorption desalination (AD) system is a potentially useful technology that could effectively address the interconnected water-
energy problem. It can use solar energy or waste heat as a heat source, making it an excellent representative of the renewable energy market’s 
current attractiveness (Hoseinzadeh et al., 2020). It also has the capability of concurrently producing freshwater and cooling power. Additionally, 
the system’s ease of use, low corrosion, and lack of fouling all contribute to a lower cost of operation (Mohammed & Askalany, 2019).

Nomenclature

AD adsorption desalination
SDWP specific daily water production 

(m³/ton.day)COP coefficient of performance

cp specific heat (kJ/kg K) T temperature (K)

DCMD direct contact membrane distillation η efficiency

ETSC evacuated tube solar collector Subscripts

GOR gain output ratio w water

m mass flow rate (kg/s) s solar collector

Fig. 1. Schematic diagrams of S-MDAD hybrid system.

A Solar-Driven Integrated Adsorption Desalination and Direct Contact Membrane 
Distillation System for A Net-Zero Fuel Consumption
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Abstract: This paper demonstrates the synergistic integration of direct contact membrane distillation system (DCMD), adsorption 
desalination system (AD), and evacuated tube solar collector (ETSC), referred to as S-MDAD. The performance of S-MDAD was 
analyzed using a mathematical model of each component and compared to that of the standalone AD system. Specific daily 
water production (SDWP), gain output ratio (GOR), coefficient of performance (COP), and freshwater cost were investigated as 
primary performance indicators. Based on the findings, we can conclude that GOR values can approach 1.59, which is greater 
than the standalone AD system by more than 133%. The SDWP reaches 60.1 m³/ton per day, which is 157.3% more than the AD 
system. Moreover, the cost of freshwater produced from S-MDAD system is calculated to be around 0.001 $/L, with a reduction of 
around 97.9% from the standalone AD system.
Keywords: Net-zero energy; solar-driven; integrated system; DCMD; Adsorption desalination.
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Due to its low productivity and hence low efficiency, the adsorption cycle is still not widely available on the market. Therefore, its performance 
(SDWP, GOR, and COP) can be improved using different adsorbents, different configurations, or integrating it with another system. Efficiency 
can be further enhanced by utilizing a renewable energy source, such as solar energy (Abo-Elfadl et al., 2020).  One solar energy technology that 
performs well in low radiation, cloudy, or cold weather is the evacuated tube solar collector (ETSC), which can be utilized throughout the year 
(Sharafeldin & Gróf, 2018). With its vacuum insulation, selective surface coating, and tubular absorber, this collector has reduced operating costs 
and lower heat loss through convection than flat plates collectors. Additionally, the broken tubes can be easily replaced, so the entire system 
doesn't have to be shut down for maintenance (Ayompe et al., 2011).
In order to improve GOR and freshwater production while minimizing freshwater cost, this research proposes a solar-assisted hybrid DCMD and 
AD desalination system. Since adsorption is exothermic, the waste heat it produces in the adsorption bed can drive the DCMD. The DCMD system 
is fed by the seawater used to collect the waste heat from the AD system. An increase in SDWP and GOR, as well as a decrease in freshwater costs 
have been observed in the designed hybrid S-MDAD system. S-MDAD also produces a cooling effect as a byproduct. Notably, the DCMD system is 
added to enhance the performance of the AD system, which has a relatively poor performance, by utilizing its waste heat.

System description
As can be seen in Fig. 1, the proposed hybrid system consists of DCMD system, AD system, evacuated tube solar collector (ETSC), and two water 
storage tanks. The DCMD and AD systems are integrated synergistically where the DCMD seawater feed passes through the adsorption bed 
to utilize the waste heat that would otherwise be lost during cooling. Meanwhile, a desorption process using hot water is carried out on the 
desorption bed.  ETSC system is implemented to produce hot water, which is stored in the tanks. In order to maintain homogenous hot water 
temperature in Tank1, the hot water is circulated between tank 1 and the ETSC. 
The secondary cycle transports the heated water from Tank1 to Tank2. The second cycle improves the hybrid MDAD's performance by reducing 
the temperature fluctuations of the driving hot water and producing more stable input heating water temperature (HWT).  This is due to the fact 
that, as mentioned by (Ali et al., 2017), systems with hot water storage tanks have less fluctuating potable water product and cooling energy than 
systems without storage tanks. 

Mathematical modeling
We, here, specifically concentrate on changes in solar irradiance and ambient temperature in Dhahran city (26.2361° N, 50.0393° E), which locates 
in the eastern region of Saudi Arabia. The software Homer (HOMER - Hybrid Renewable and Distributed Generation System Design Software) was 
used to extract the meteorological weather data. Water that will be used during the desorption periods was heated in two tanks using evacuated 
tube solar collectors (ETSCs). ETSCs were used to heat water stored in two tanks to be used during the desorption periods. The driving thermal 
power for the present solar-powered hybrid desalination system is determined as (Ali et al., 2017):
where Tamb is the ambient temperature, Is is the solar intensity, Asc is the area of the solar collector, and a0, a1 and a2 are coefficients which are taken 
as 0.7, 10.0, and 0.03, respectively (Ali et al., 2017).

               (1)

               

                         (2)
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The mathematical models with validation of AD, DCMD, and the integrated AD-DCMD  systems were published in our previous work (Alazab et 
al., 2022). The key parameters, the performance, and the economic analysis of the integrated AD-DCMD system were also determined using the 
same models. 
The beds used in the AD system are regarded the same as those described in the published experiment (Alsaman et al., 2017). The operating 
parameters of the DCMD system and the two identical beds, the condenser, and the evaporator are stated in our previous work (Alazab et al., 
2022). REFPROP software was used to obtain the thermodynamic properties of water (REFPROP | NIST). The simulation is carried out using the 
MATLAB software with a computational tolerance error of <10-6.

Fig. 2. (a) Hourly presentation of solar radiation profile for Dhahran in 19 September.  
(b) Average hot water inlet temperature record during the year for Dhahran.
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The monthly average GOR variation over the year is illustrated in Fig. 3(b). It is also shown that, using the same amount of energy, GOR of the of the 
hybrid S-MDAD system is much higher than that for standalone AD system. For instance, in September, GOR of stand-alone AD, S-MDAD systems 
are 0.68 and 1.59, respectively. This mean a 133% increase in GOR was achieved with integration.
As indicated in Fig. 4(a), cooling effect is produced as a secondary product. The optimal cooling effects is in January and December, with COP 
values of 0.275 and 0.305 respectively, which are higher than some standalone AD refrigeration systems (e.g. (Lattieff et al., 2021)) at similar 
operating conditions.
The economic model was used to determine the S-MDAD integrated system's overall capital investment cost. Fig. 4(b) compares the results of 
standalone AD, MDAD, and S-MDAD systems. It is obvious that integrating a DCMD system with the adsorption cycle lowers the specific cost of 
freshwater. The cost of produced water is further significantly reduced when a solar system is added to the collection.  For instance, the proposed 
S-MDAD system produces potable water at a specific cost of around 0.001 $/L throughout the year. This particular cost of water is about 97.9% less 
than that of standalone AD system using the same amount of energy. 

Results and discussion
Here, we reveal the hybrid S-MDAD's simulation outcomes. For the most part, May marks the beginning of Saudi Arabia's warm season, which 
typically lasts until October. September is the warmest month in Dhahran, with average Tamb  and SR of around 34.5 °C and 311.4 W/ m², respectively. 
The hourly display of SR for Dhahran on September 19 is shown in Fig. 2(a). While solar radiation is completely absent at night, it progressively 
rises throughout the day. The intake HWT to S-MDAD varies throughout the year, as seen in Fig. 2(b). The temperature of the hot water exiting the 
collector varies with the weather conditions.
As shown in Fig. 3(a), the hot water from the insulated storage tank that heats the desorption bed during the desorption process significantly 
affects the SDWP of the S-MDAD hybrid system. The quantity of freshwater given from the DCMD and AD systems, and consequently from the 
hybrid system, constantly increases as the regeneration/driving temperature rises. For instance, the SDWP of the whole system rise from about 
48.5 to 60.1 m³/ton.day (~24% improvement) when the desorption temperature goes from 87.3 to 95.9 °C through January to September in 
Dhahran, Saudi Arabia.

Fig. 3. (a) Average SDWP of AD and S-MDAD during the year for Dhahran.  
(b) Average GOR of AD and S-MDAD systems during the year for Dhahran

Fig. 4. (a) Average COP of S-MDAD during the year for Dhahran.  
(b) Average freshwater costs of AD, MDAD, and S-MDAD during the year for Dhahran
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Conclusion
It is proposed to combine the solar-powered adsorption desalination (AD) cycle with the direct contact membrane distillation (DCMD) system. 
The thermodynamic performance and economic feasibility of this hybrid system are analyzed using mathematical models. The proposed system 
(S-MDAD) outperforms the standalone  AD system  in terms of both freshwater production and GOR. The proposed system’s SDWP and GOR 
improved by 157.3% and 133%, respectively. The cost analysis indicates that the specific cost of freshwater produced from the hybrid MDAD 
system reduces from 0.02 $/L to 0.001 $/L when solar system is used. The S-MDAD has a 97.9% lower cost per letter of potable water produced 
compared to the standalone AD system.
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Optimal design of refineries for low-density polyethylene (ldpe) waste upcycling

Borja Hernández, Dionisios G. Vlachos, Marianthi G. Ierapetritou   
Department of Chemical and Biomolecular Engineering. 
University of Delaware, Newark, Delaware, United States

Abstract: In this work, we propose a superstructure optimization study to determine the products and processes for plastic 
depolymerization and upgrading that minimize the generation of CO2 emissions while ensuring economic feasibility. The 
processes studied have been modeled using Aspen Plus® and custom models with Python that have been later reduced and 
considered within a Mixed-Integer-Lineal Programming optimization problem (MILP). The MILP has been solved following the 
ε-constraint method obtaining a pareto set of solution with the most profitable and environmentally friendly technologies. 
Chemical recycling based on solvents is the technology that avoids the highest release of CO2 emissions. The most profitable 
path is obtained for a multi-product refinery where plastic is first pyrolyzed, obtaining naphtha that is used to produce aldehydes. 
Other alternative solutions also suggest pyrolysis as depolymerization technology but with different final products. 
Keywords: Superstructure optimization, plastic waste, recycling, upcycling, multi-objective optimization. 

Introduction 
Global plastic production is estimated at 350 million tons per year and is projected to increase by over 1200 million tons by 2050 (Rochman, 2013). 
Most of these plastics are discarded after their first use, with their characteristics nearly intact, permitting easy recycling. However, due to the cost 
associated with the collection and revalorization, only 9% of the total plastics produced in the United States are recycled, and 16% are incinerated 
(U.S. EPA, 2019). The remaining 75% is disposed into landfills without obtaining any value.
Mechanical recycling has been the most widely implemented technique due to its lower capital cost. However, it generates plastic that can only 
be recycled up to 3 times (Dogu et al. 2021). As an alternative, chemical and thermochemical recycling techniques have been proposed due to the 
ability to recover polymers with intact properties or generate added-value products. Chemical techniques based on the combination of solvents 
and antisolvents have been demonstrated to be very effective, with recovery yields of around 90% (Walker et al., 2020). Thermochemical recycling 
based on pyrolysis is the most extended thermochemical method with industrial scale plants, but other technologies such as gasification, 
hydrothermal liquefaction (HTL), hydrocracking (Dogu et al. 2021) or hydrogenolysis (Wang et al., 2021) have started to cover attention last years. 
Techno-economic and life cycle assessments have evaluated these technologies for some specific products. For example, pyrolysis has been 
studied to produce LDPE (Somoza-Tornos et al. 2020), or gasification has been investigated to produce methanol (Singh et al. 2022). However, 
these technologies may result in other alternative products. The naphtha in pyrolysis obtained contains a high fraction of olefins that can be 
transformed into a wide range of final products such as lubricants by oligomerization, detergents by alkylation, aldehydes by mean of the 
oxo-process, virgin polymers like LDPE or polypropylene or polystyrene, alcohols by oxidation, etc. In a similar way, gasification also results in 
syngas that can be transformed into methanol, ethanol, or Fischer-Tropsch fuels.  Other technologies have more restricted applications, such 
as hydrocracking or hydrothermal liquefaction, since they result in paraffins that are of lower value. Understanding, which technology provides 
the highest value-added product, can be critical to engage companies in treating this waste. In a similar way, it is also interesting to determine 
the most environmentally friendly technology and product generated. In this context, the optimization framework described here can provide 
significant insights for determining the desired products and pathways.

Methodology
In this work, we propose a superstructure formulation to determine the optimal products and processes. Due to its high contribution to the 
market, 24% (U.S. EPA, 2019), LDPE is selected as a reference waste. The superstructure formulation has been developed as described in the 
following paragraphs. 
First, process models have been developed for all the technologies. Most of the processes have been modeled with Aspen Plus®. However, specific 
processes (e.g., mechanical recycling, sorting) and processing units (e.g., extruder after solvent-based recycling or polymerization of the ethylene 
obtained in pyrolysis) are not available in Aspen Plus®, and they have been evaluated with custom models. A summary of all the processes 
considered is provided in Figure 1. Once the models with mass and energy balances have been developed for all the processes, techno-economic 
(TEA) and life cycle analyses (LCA) are performed. The cost of raw materials, utilities, and amortization due to investment are considered in the 
economic analysis. A recovery period of 10 years is considered for the life of the plant. LCA assessment is performed from cradle to gate in each 
process to determine the emissions generated by the raw materials and utilities. Other emissions generated by the construction of the catalyst 
production are not considered in the analysis. The emissions are computed following Traci method with the emission factors from Ecoinvent v3.8. 
The yields obtained in each of the processes, the costs involved, and the emissions generated are modeled with linear and parametric models 
that are included in each of the blocks of the superstructure formulation. The capital costs are addressed following a piecewise linear model. To 
evaluate technology integration (e.g., syngas can be used in parallel with pyrolysis to produce aldehydes), some sections of the code consider the 
composition of the stream as a variable. This requires the use of McCormick relaxations (Misener,R. and Floudas,C. 2009) for the bilineal product 
used in computing the resultant composition of a mixer. Another relaxation technique used in the selection of multiple alternatives is a big-M 
formulation to avoid the definition of a large set of binary variables. This allows reducing the number of discrete variables, resulting in a problem 
with a final size of 1,522 continuous variables and 428 discrete variables.  The problem is formulated as a mixed integer linear programming (MILP) 
problem that is solved in GAMS using CPLEX. The ε-constraint method is followed for solving the problem considering multiple objectives, the 
profitability, and the CO2 emissions generated. Profitability is computed as defined in Eq. (1), where  corresponds to the costs involved in all the 
processes, and  the revenue generated by selling all the finished products. The emissions are computed as in Eq. (2), where the emissions for each 
process,  are computed as defined in the previous paragraph and the   refer to the discount generated by each of the final products when they 
substitute the same product based on conventional processes and fossil sources.
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Results
The solution of the optimization problem with the ε-constraint method results in a Pareto chart that provides the most profitable and 
environmentally friendly solutions as well as the intermediate solutions see Figure 2. Chemical recycling based on the use of solvents is the 
technology that avoids the highest release of CO2 emissions. This technology does not require high energy intensive methods, which generate 
high emissions. Furthermore, compared to mechanical recycling, it results in a polymer with nearly intact properties that can be recycled more 
times. 
The most profitable path is obtained for a multi-product refinery where plastic is first pyrolyzed obtaining naphtha with a wide range of carbon 
olefins (C2 to ~C20). Light olefins (C2 to C4) are suggested to be oligomerized to increase the amount of α-olefins. These α-olefins are separated 
in two parts, the ones from C5 to C8 are separated in detail and used to produce aldehydes by the oxo-processes. The α-olefins with a carbon 
number higher than C8 are suggested to be oligomerized to produce olefins with a carbon number higher than C20 that can be used as lubricant. 
The paraffins of the naphtha in the process are assumed as inert in the oligomerization and they are separated by distillation from the lubricants.
Apart from the most profitable and environmentally friendly solution, ε-constraint method also allows for obtaining intermediate alternative 
solutions that try to balance the two objectives. As can be seen from the Pareto chart presented in Figure 2, there are two other suggested 
alternatives. These two intermediate cases also suggest the use of pyrolysis as depolymerization technology. At the same time, fractions higher 
than C8 are desired to produce lubricants.

Figure 2.   Pareto chart obtained by solving the MILP optimization problem. Figure 1. Summary of alternatives considered in the superstructure.

Conclusions
The presented optimization formulation can support decisions for future technology implementation where plastic waste is considered as an 
alternative resource to fossil sources to produce valuable chemicals. Decisions are presented considering economic and environmental criteria, 
but they can be extended to other objectives including social impact. The work can also be extended to consider important components related 
to the supply chain of chemicals and collection of plastic waste. 
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Abstract: Cement production is an energy-intensive process and a major contributor of greenhouse emissions (GHG). To strongly 
reduce its global warming impact (GWI), it is essential to retrofit conventional cement production with carbon capture utilization 
or storage technologies and an energy supply system based on renewable energies. We present a superstructure optimization 
approach that enhances a well-established conventional route of cement production with various alternative options for carbon 
capture and utilization (CCU), carbon capture and storage (CCS), as well as power-to-gas technologies for provisioning of process 
heat. Applying bi-objective optimization, we assess the economic and environmental impact of optimal retrofits with minimal 
GWI and total annualized costs. Our results show that the installation of electricity-powered retrofit units, air separation and 
alkaline electrolysis, and the substitution of a fraction of fossil fuels by H2 can reduce the amount of GWI by 38% at an additional 
cost of 113 €/t cement. However, a strong GWI reduction is only possible by complementing with CCU technologies, raising the 
added costs to 406 €/t cement. The increase in operating costs is due to much higher electricity consumption, therefore the use 
of renewable electricity is crucial to achieve a large GWI and employ CCU technologies.
Keywords: Cement production, Superstructure optimization, Bi-objective optimization

Introduction 
Carbon capture, utilization or storage (CCUS) technologies are necessary for the retrofit of cement plants with the aim of abating CO2 emissions 
(Karlsson et al., 2020). According to technology readiness level (IEA, 2020), one of the most mature technologies is oxyfuel combustion, which 
is between the large prototype and pre-demonstration stage. Power-to methane technology can utilize the captured CO2 and transform it into 
synthetic natural gas that can be sold for the residential sector and power generation (Ghaib and Ben-Fares, 2017) or used to supply thermal 
energy in the cement production process itself. 
Since most of the retrofit technologies developed for cement production have been investigated separately, our contribution focuses on a holistic 
assessment that considers the different options in a process-wide optimization. A particular challenge is to find the optimal combination and 
sizing of available technologies to identify process designs with minimum global warming impact (GWI) and total annualized costs (TAC).

Problem Formulation
We propose a superstructure that adapts a well-established conventional route of cement production by including one or more of: oxyfuel 
combustion, alkaline or polymer electrolyte membrane electrolysis, catalytic or biological methanation, air separation, carbon purification, 
and carbon capture and storage. We develop a model consisting of mass and energy balances combined with nonlinear cost correlations and 
implement it in our open-source energy system optimization framework COMANDO (Langiu et al., 2021). After automatic linearization, we obtain 
a bi-objective mixed integer linear program (MILP) formulation, with an economic objective function (min TAC) accounting for investment 
and operating costs of each unit and the variable cost of consumed commodities, and a global warming impact objective function (min GWI) 
considering direct process emissions and indirect emissions from the use of electricity and commodities.   In the bi-objective optimization 
problem, the TAC and GWI are repeatedly solved. The resulting MILPs are solved using Gurobi 9.5.1 with a relative optimality tolerance of 1%.     

Results
With respect to the status quo of electricity production in Germany with a GWI of 375 gCO2/kWh (Icha and Lauf, 2022), assuming a CO2 tax of 
54.17 EUR/t CO2 (EEX, 2021) and an electricity price of 50 EUR/MWh (Bundesnetzagentur - SMARD.de, 2022) there is no trade-off between the two 
objectives, as the optimal design is a conventional process that burns coal and emits CO2 to the atmosphere (red rhombus in Fig. 1).



63

THEME 4 
Green and sustainable processes 
for the circular economy

Paper 36

Paper 36

Figure 1.   Pareto-front of retrofits with minimal TAC and GWI

Considering an electricity supply from the Norwegian grid with a GWI of 10 gCO2/kWh (IEA, 2022), 8 Pareto front design points are generated, 
and interpolated lines between the optimal solutions are added to guide the reader. All evaluated points show a trade-off between the economic 
and environmental objectives, with one objective improving while the other worsening. The fourth design point from left on the dashed gray 
line in Fig. 1 shows that initially coal for provisioning of process heat is substituted by H2, decreasing the GWI by 38%. Further reduction of GWI 
requires significantly more expensive options, as the implementation of carbon capture and power-to-gas technologies is needed (8th design 
point in Fig. 1).

Conclusions
The results demonstrate that strong reductions in GWI can be achieved, but only with expensive technologies for carbon capture and utilization, 
e.g., power-to-gas, as solely eliminating fossil fuel combustion is not sufficient.
In the next step, we will expand the considered superstructure to include further options for carbon capture technologies, i.e., chemical 
absorption, direct separation, and calcium looping.
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Abstract: In order to reduce petroleum diesel produced from fossil fuels to cope with climate change, interest in producing bio-
diesel from waste-residues is increasing. Bio-diesel is produced from vegetables, animal fat wastes, and waste oils generated after 
food production such as fried foods. Animal fat waste and used cooking oil contain 10-50% free fatty acid (FFA), which reduces 
bio-diesel yield. Therefore, it is necessary to remove FFA before the trans-esterification reaction, which produces glycerol and 
fatty acid methyl esters (FAME) from triglyceride and alcohol.
The techno-economic analysis (TEA) of a bio-diesel production process including pre-treatment, pre-ester or neutralization 
reaction, offensive odor treatment, and wastewater treatment was presented for economic feasibility. The bio-diesel production 
cost from animal waste oil with high and medium acid value was 1.68 $/l and 1.12 $/l, respectively.
Keywords: Biodiesel production, Animal fat waste (AFW), Free fatty acid (FFA), Process modeling, Techno-economic analysis 
(TEA)

Introduction 
Demand of biofuels is increasing to reduce carbon dioxide emissions from transport to achieve carbon neutrality in 2050 (IEA, 2020). Recently, the 
demand for electric (or hydrogen) vehicles has increased, and biofuels are interested in replacing fossil fuels as a fuel for aircraft and ships (IEA, 
2021., Elgharbawy et al., 2021). The biodiesel in biofuels is produced from renewable bio-sources such as vegetables and animal fat wastes (De 
Araújo et al., 2013., Gebremariam et al., 2018). Attention is paid to inedible feedstock such as animal fat waste and used cooking oil as feedstocks 
to produce biodiesel, because edible raw materials have food security and ethical issues (Kumar et al., 2022., Adewale et al., 2015). However, 
animal fat waste and used cooking oil contain a high free fatty acid (FFA) in oils (Gnanaprakasam et al., 2013). The acid value is a mass of potassium 
hydroxide (KOH) required to neutralize 1 g of chemical substance, and a high acid value deteriorates the quality of oil (Odoom et al., 2014). When 
bio-diesel is produced using animal fat wastes, the cetane number is higher than vegetable oils due to high ratio of saturated fatty acids in animal 
waste fats (Adewale et al., 2015). A high cetane value has the advantage of lowering NOx by lowering the initial temperature of the combustion 
process, which leads to lower NOx (Alleman et al., 2016). Oil containing a high FFA generates soap emulsion during bio-diesel production and 
reduces safety (Susilowati et al., 2019., Kuleasan et al., 2008). Because FFA contained in animal fat waste interferes with the ester exchange reaction 
and reduces the biodiesel yield, a pre-treatment process to remove FFA is required (Susilowati et al., 2019., Leung et al., 2010).
In this study, process modeling was conducted for biodiesel production from animal waste oil with medium and high acid values. Economic 
feasibility was performed based on the simulation of the process flow diagram (PFD).

Raw bio-diesel production processes
The 1,250 kg/hr (or 4,170 kg/hr) of animal fat waste containing 13 wt% (or 25 wt%) of FFA is purified below an acid value of 5 using pre-
transesterification, neutralization reactions. The raw bio-diesel production process used two scrubbers for offensive odor treatment and included 
a process for wastewater treatment from water washing, as shown in Figure 1.

Figure 1.   Block flow diagram (BFD) of raw 
bio-diesel production
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Results
As a result of process simulation using ASPEN Plus (ASPEN Tech, USA), 1,000 kg/hr (or 4,000 kg/hr) of raw bio-diesel was produced from animal fat 
wastes with a high and medium acid values. The production cost was calculated as 1.68 $/𝑙 and 1.12 $/𝑙 , respectively.
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Machine-learning-powered process design for the recycling of waste polyurethane

Luca Bosetti, Benedikt Alexander Winter, Johanna Lindfeld, André Bardow 
Energy and Process System Engineering 
ETH Zurich, 8092 Zurich, Switzerland

Abstract: A fully circular economy for the plastics industry needs both mechanical and chemical recycling. Some polymers, such 
as polyurethane rigid foams (PUR), can only be recycled chemically. The resulting multi-step process involves depolymerization, 
which leads to complex mixtures and thus challenging separations of the valuable monomers, e.g., aniline. To minimize the 
energy demand for separation, extraction seems promising. However, extraction requires a solvent with specific thermodynamic 
properties. Here, we present a machine-learning-based framework to screen solvents for the chemical recycling processes of PUR 
foams. The in-house machine learning model SPT is used to calculate the partition coefficients of the target component in the 
two phases resulting from the extraction process. The predicted properties allow us to efficiently rank solvents suitable for the 
separation of aniline in the chemical recycling of PUR.
Keywords: Machine Learning, Polyurethane Waste Recycling, Computer-aided Process Design

Introduction 
A net-zero CO2 future seems unfeasible without a circular economy for the chemical industry (Meys et al. 2020). Many studies agree that this circular 
economy would need both mechanical and chemical recycling. Recycling's contribution is twofold: first, substituting fossil-based feedstocks, and 
second, avoiding plastic pollution and carbon emissions due to waste combustion at the end of life. 
The recycling of Polyurethane rigid foams (PUR) is limited to chemical recycling due to its physical and chemical structure, which prohibits 
mechanical recycling. Chemical recycling often results in complex mixtures that require energy-intensive separation processes, which challenges 
the sustainability of the recycling process. Additionally, these mixtures are difficult to characterize thermodynamically, making it difficult to design 
systematic recycling processes.
In this work, we develop low-energy separation pathways for the chemical recycling of PUR  by exploiting predictive thermodynamic models 
based on machine learning.

Method
Our analysis considers that end-of-life PUR is processed in a catalytic process, resulting in a mixture of aniline, a polyol, e.g., propylene glycol (PG), 
and other by-products, e.g., acetone. This mixture simplifies the expected pyrolysis output but is a suitable approximation to develop a method for 
aniline recovery. In the most straightforward downstream, a series of distillation columns separates aniline from the rest of the products. However, 
the energy demand and total cost of the separation plant could potentially be reduced by an extraction unit at close to ambient temperature, 
which exploits the formation of a liquid-liquid equilibrium between the main component in the mixture, e.g., aniline and a solvent (Green and 
Southard 2019).
The main challenge in extraction is identifying a solvent, which requires accurate thermodynamic properties. However, these thermodynamic 
properties are often not available, leading to the need for predictive thermodynamic models, e.g., COSMO-RS (Polte et al. 2022). Recently, some 
of the authors developed a machine learning approach that can be more accurate and computationally efficient to calculate activity coefficients 
for a broad range of molecules (Winter et al. 2022a). Here, we embed the machine learning model into a framework to determine the solvents' 
thermodynamic properties. Thereby, we can explore a large solvent database at a reduced computational cost.

Figure 1. Partition coefficients of acetone between aniline and 
around 550 candidate solvents (each represented by a blue dot) 
forming an LLE with aniline identified by a database screening 
of 10000 compounds; around 50 solvents show  log10Pacetone<0 , 
making them suitable for the extraction of acetone from aniline
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Results and discussion
The machine learning model (SMILES to Properties Transformer, SPT) is based on natural language processing and takes SMILES code as input. 
SPT was originally trained to estimate activity coefficients (Winter et al. 2022b). Here, we further trained SPT to estimate properties relevant to the 
extraction process: first, we limited the training to only solvents forming a liquid-liquid equilibrium (LLE) with aniline; second, properties such as 
boiling point, melting temperature, etc., have been calculated to ensure that the extraction process would be able to operate seamlessly. Finally, 
the screened solvents have been ranked according to an optimality indicator, which can be a heuristic quantity like the partition coefficient, 
defined in equation 1, or an indicator resulting from a more thorough analysis of the operation of the extraction unit, e.g., the solvent use or the 
energy demand for the entire column. In this study, we limit the analysis to the partition coefficient, defined as

(1)log10Pi = log10
γ II

i

γI
i

where γi is the activity coefficient of compound i, calculated with SPT, and phases I and II are the raffinate and the extract outlet flows of the 
extraction column, respectively. A value of  logpi close to 0 means that the compound i would split equally into both phases. Values of the partition 
coefficients lower than 0 indicate a solvent able to extract compound i from the original solvent, thus achieving the desired separation.
By screening a large database of around 10000 candidates, the model found around 550 solvents forming an LLE with aniline. For these 550 
solvents, the value of log10P for acetone has been calculated and used to rank the solvent candidates (Figure 1). For around 50 solvents, the 
log10P is lower than 0, thus making these solvents potential candidates to extract acetone from aniline in the context of chemical recycling of PUR.

Conclusions
Machine-learning models are shown to support the conceptual design of the separation of a reaction mixture coming from PUR foam recycling. 
The presented design method allows us to screen rapidly a very large number of solvents for which the thermodynamic properties are not 
experimentally available but are instead predicted with SPT. Further constraints specific to extraction can also be considered. The approach can be 
extended to include process-level optimality indicators, like reducing energy demand and solvent use, which are not reported in this contribution. 
Moreover, this method can be applied to design solvents, making it an integrated solution for computer-aided molecular and process design 
(CAMPD).
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Optimizing energy exchanges for decarbonizing industries through industrial ecology 
concepts
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Abstract: Regarding the current environmental context, the production systems need to be highly transformed and modified in 
order to fit with the polluting norms. Industrial ecology consists in the gathering of companies on a geographical area that are able 
to share services, energy flows, network structure or equipment to reduce the environmental footprint of the industrial complex. 
These symbiotic relations also lead to a decrease of economic cost. The aim of the paper is to propose an optimization procedure 
to take into account environmental footprint, total cost aqof the network and the flexibility at a design stage to overcome the 
different barriers encountered in the practice. One of the main bottleneck is the ability of the network to adapt to fluctuations of 
inlet flows in a crisis context, or to different level of production of partners if the economic situation is changing. It is shown that 
the flexibility at a design stage has an investment cost that we are able to define and that an increase of the cooperation leads to 
reduce carbon emissions of the site.
Keywords: Decarbonation, industrial ecology

Introduction and scientific context
The National Low Carbon Strategy (SNBC) sets out objectives for reducing greenhouse gas emissions in France in the short/medium term. It 
has two ambitions: to achieve carbon neutrality, i.e., net-zero emissions by 2050 (an objective introduced by the July 2017 climate plan and 
enshrined in law), and to reduce the carbon footprint of the French people. French industry (chemical industry, steel industry, cement industry...) 
is one of the main emitting sectors, responsible in 2018 for the emission of 70 Mt CO2/year, i.e., 20% of French emissions (Directive 2018/2001). 
Transforming industries towards decarbonization and sustainability can be achieved by enforcing industrial ecology (IE) through the development 
of eco-industrial parks (EIP) (Boix et al., 2015). The concept of Industrial Ecology has emerged in scientific literature in the early 90’s (Frosch and 
Gallopoulos, 1989). This concept, which is directly linked to sustainable development, aims at engaging separate industries, geographically closed 
enough, in a collective approach so that exchanges of raw materials, by-products, energy and utilities are maximized (Chertow, 2000). Indeed, the 
most widespread manifestations of these kinds of industrial symbiosis are eco-industrial parks. A definition widely
accepted for EIP is “an industrial system of planned materials and energy exchanges that seeks to minimize energy and raw materials use, minimize 
waste, and build sustainable economic, ecological and social relationships” (Montastruc et al., 2013). Despite some successful proofs of concept 
that they reduce economic, environmental and social impacts, the implementation of EIP is often limited to dedicated hubs, industrial zones 
or maritime ports, in France (maritime ports (Rhône valley- France, SOGEBI Lacq, Kalundborg’s EIP in Denmark, PIICTO Fos- Marseille-9 France, 
Grand Port Maritime de Nantes Saint- Nazaire-Fance, Grand Port de Dunkerque-France, Port de Strasbourg-France...). Among the barriers already 
identified, the notion of interdependence and flexibility of the networks between industrial actors has a prohibitive effect. Moreover, the last few 
years have provided numerous examples of the uncertain nature of the production domain, whether due to pandemics, geopolitical conflicts or 
raw material shortages. This work aims at developing a robust methodology to take into account the flexibility that an exchange network can 
assume during its design. Flexibility refers to the ability of a given system to operate in a fluctuating context, actively or passively, with or without 
modification of the system in question (Hoch and Eliceche, 1996). The flexibility of an EIP will thus be zero if at least one of the enterprises can no 
longer operate when its input parameters vary. Boix et al. (2023) has recently shown that the development of a new optimization procedure can 
lead to anticipate the cost of the flexibility. The aim is to show the ability of industrial symbioses to be key elements for the decarbonization of 
production systems by reducing their carbon footprint.

Methodology
A superstructure has been developed in Boix et al. (2022) to model the multi-energy network (vapor of different levels of pressure, electricity 
from renewable sources and from the grid) of an eco-industrial park. A Mixed Integer Linear Program (MILP) is formulated to model the energy 
exchanges in both each company and inter-companies simultaneously. The objective function is the net global emissions of CO2 related to the 
energy consumption of the EIP as a function of the connections between companies. The flexibility is used to evaluate the different optimal 
networks among the Pareto front. The case study chosen (Kim et al., 2010) involves 15 companies, each one encompasses four energy demands 
over four time periods. The impacts are evaluated through an indicator based on Life Cycle Assessment approach. An impact factor is used to 
convert the energy consumptions into carbon emissions obtained with EcoInvent database through SIMAPRO software.
Results and discussion
During the iterations of the optimization procedure, connections between companies are allowed step-by-step what increases the level of 
cooperation of companies in the EIP. According to figure 1, if the level of cooperation increases in the symbiosis, then, a carbon emission reduction 
could be effective.
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Figure 1. Decrease of carbon emissions 
with the increase of cooperation in the EIP
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A 30% reduction of carbon footprint can be achieved by 
increasing the number of exchanged flows in the EIP. By 
the way, the procedure developed in Boix et al. (2023) for 
taking into account the flexibility of the network leads to an 
optimal solution with 20% of flexibility with a network 
involving 15 connections in the total EIP between the 
different companies. This solution is the same as the one 
chosen by TOPSIS as a multicriteria decision making tool 
(Figure 1). Indeed, increasing the number of flows 
exchanged (going from 15 to 30) will not lead to a great 
decrease of carbon emissions but a great loss of flexibility 
will be measured.  

Conclusion and perspectives 

The results obtained are generic enough to be applied to 
other cases study and can help to reduce carbon footprint of 
industrial production. Indeed, if the networks are flexible 
enough with a measured cost, a generalization of industrial 
ecology at a territorial scale could help to reach the carbon 
emissions objectives while maintaining production of goods 
and services. A perspective of this work is the application 
of the methodologies deployed to the territory scale with a 
management of energy flows between the different actors, 
as the problematics of nexus (Cansino-Loeza, 2022).  
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A 30% reduction of carbon footprint can be achieved by increasing the number of exchanged flows in the EIP. By the way, the procedure developed 
in Boix et al. (2023) for taking into account the flexibility of the network leads to an optimal solution with 20% of flexibility with a network involving 
15 connections in the total EIP between the different companies. This solution is the same as the one chosen by TOPSIS as a multicriteria decision 
making tool (Figure 1). Indeed, increasing the number of flows exchanged (going from 15 to 30) will not lead to a great decrease of carbon 
emissions but a great loss of flexibility will be measured.

Conclusion and perspectives
The results obtained are generic enough to be applied to other cases study and can help to reduce carbon footprint of industrial production. 
Indeed, if the networks are flexible enough with a measured cost, a generalization of industrial ecology at a territorial scale could help to 
reach the carbon emissions objectives while maintaining production of goods and services. A perspective of this work is the application of the 
methodologies deployed to the territory scale with a management of energy flows between the different actors, as the problematics of nexus 
(Cansino-Loeza, 2022).
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Abstract: Lithium, declared “Critical Raw Material” by the European Union in 2020, is a competitor to hydrogen as an alternative 
to petroleum. While its use is increasing, the natural reserves are decreasing, encouraging new sources of supply, such as 
seawater desalination concentrates. This work aims at the computational study of the selectivity of lithium extraction with 
regard to other cations present in high concentrations in seawater desalination concentrates such as Na+, K+, Mg2+, Ca2+ and 
Sr2+. For this purpose, the calculated coefficients of extraction K, cation•(β-diketones or organo-phosphates), were calculated. 
These calculations were carried out by molecular simulation using ab initio Density Functional Theory (DFT), to determine the 
geometries, reaction energies, and thermodynamic parameters. The results show, on the one hand, that the complexation 
reaction energies of the systems have negative ΔG values, indicating stable complexes and spontaneous reactions, and, on the 
other hand, that the synergistic effect of the extractants allows obtaining a high selectivity Li+ with respect to the other cations, 
for the systems DBM•TOPO•HFDOD and DBM•TOPO•HBTA.
Keywords: Lithium, Desalination Concentrates, Extraction, Selectivity, Molecular Simulation, DFT

Introduction
Lithium was considered for the first time as one of the raw materials declared critical by the European Union in 2020. The development of electric 
vehicles and the use of portable electronic devices will increase Li+ consumption, estimated at 56,000 tons in 2020 (U.G. Geological Survey, 
2021). In the context of the Circular Economy, new lithium sources such as seawater reverse osmosis (SWRO) desalination concentrates show 
increasing potential. Currently, seawater desalination plants are generating concentrated brine discharges about of 100×106 m3 each day, with 
the rejects being 10 to 15 times more concentrated than seawater. Thus, it is a challenge to incorporate technologies capable of extracting Li+ 
from SWRO brines due to its still low concentration and competition with the rest of the ions. So, liquid-liquid extraction has demonstrated 
numerous advantages for the separation and purification of metals from different matrices.
The state of art describes the use of a number of extractants of different natures, mostly used in model solutions containing just one single cation. 
The need to selectively extract lithium in complex mixtures can lead to extraordinarily high experimental effort. To avoid inefficient experimental 
work, a computational study has been carried out on the selective extraction of lithium in presence of the metal ions found in higher concentrations 
in the brines, such as Na+, K+, Mg2+, Ca2+ and Sr2+, using the β-diketones DBM, TTA, FTA, BTA, FDOD and LIX54 and the organophosphates TOPO, 
TBP, TRIS and BIS. The systems Li+•DBM•TOPO and Li+•LIX54•TOPO were used for Li+ extraction, which was obtained in previous work (Coterillo 
et al., 2022). Equilibrium and thermodynamic properties, and structural optimizations were carried out using the ORCA 4.2.1 quantum chemistry 
package at the B3LYP/def2-SVP level of theory.

Computational methodology
Selectivity model (S)
The extraction capacity of extractants for metal ions was studied on the basis of reaction energies as a measure of the stability of the cation-
extractant system, i.e. as a measure of the stability of the final complex according to the complexation reaction of the form:

Am+ + nH2O ⟺ [A(H2O)n]m+              (2) 

                  (3) 

                  (4) 

Where  is the rest of the metal ions present in the aqueous solution, i.e., Na+, K+, Mg2+, Ca2+ or Sr2+.

eh

ec

k
k

K =

∑
=

+

+
++

m
iA

Li
m
iALi K

K
S

Am+
i

Am++ L ⟺ [A•L]m+             (1) 

Am+ + nH2O ⟺ [A(H2O)n]m+              (2) 

                  (3) 

                  (4) 

Where  is the rest of the metal ions present in the aqueous solution, i.e., Na+, K+, Mg2+, Ca2+ or Sr2+.

eh

ec

k
k

K =

∑
=

+

+
++

m
iA

Li
m
iALi K

K
S

Am+
i

Am++ L ⟺ [A•L]m+             (1) 

Am+ + nH2O ⟺ [A(H2O)n]m+              (2) 

                  (3) 

                  (4) 

Where  is the rest of the metal ions present in the aqueous solution, i.e., Na+, K+, Mg2+, Ca2+ or Sr2+.

eh

ec

k
k

K =

∑
=

+

+
++

m
iA

Li
m
iALi K

K
S

Am+
i

Am++ L ⟺ [A•L]m+             (1) 

Am+ + nH2O ⟺ [A(H2O)n]m+              (2) 

                  (3) 

                  (4) 

Where  is the rest of the metal ions present in the aqueous solution, i.e., Na+, K+, Mg2+, Ca2+ or Sr2+.

eh

ec

k
k

K =

∑
=

+

+
++

m
iA

Li
m
iALi K

K
S

Am+
i

Am++ L ⟺ [A•L]m+             (1) 

Where Am+ is the cation (Na+, K+, Mg2+, Ca2+ or Sr2+) and L is the selected extractant (DBM, TTA, FTA, BTA, FDOD, LIX54, TOPO, TBP, TRIS and BIS). 
In this sense, the reaction energy can also be understood as the binding energy between the cation and the extractant. On the other hand, the 
hydration process of the cations was also considered, as they are the competing reactions in the extraction processes. The hydration reaction 
between a cation and the n water molecules within its coordination shell can be written as (n=4 for this work):

The extraction was characterized by defining an extraction coefficient K, defined as the ratio between the equilibrium constants of the complexation 
(kec) and hydration (keh) reactions:
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Finally, the selectivity model was evaluated to assess the feasibility of extracting Li+ over the other cations present in the seawater desalination 
concentrates:

Where 

Am+ + nH2O ⟺ [A(H2O)n]m+              (2) 
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Where  is the rest of the metal ions present in the aqueous solution, i.e., Na+, K+, Mg2+, Ca2+ or Sr2+.
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 is the rest of the metal ions present in the aqueous solution, i.e., Na+, K+, Mg2+, Ca2+ or Sr2+.

Computational tools
The starting structures of the extractant and cation-extractant complexes were hand-crafted using the Avogadro chemical editor and the UFF 
force field potential was incorporated. Structure optimization was carried out using the ORCA 4.2.1 quantum chemistry package at the B3LYP/
def2-SVP level of theory. This includes both the optimization process and the subsequent frequency calculation. 
The effects of the solvation media -i.e. the kerosene-based organic phase on the binding process were considered by including of the Solvation 
Model based on Density (SMD) in the final energy calculations of the cation-extractant reactions. However, geometry optimizations and frequency 
calculations were performed without the implicit solvent model, as tests indicated that the final geometries remained largely unaffected and the 
numerical noise introduced by this approach would render the molecular PES too unstable to find reliable minima, partly due to the large size of 
the systems. It was also omitted in the case of the hydration reactions, as the solvent is explicitly in the reaction considered in the reaction itself.

Results
Selectivity Li+ from seawater desalination concentrates
Figure 1 shows the selectivity of lithium with respect to the rest of the cations present in high concentrations in desalination concentrates. The 
selectivity has been calculated according to Eq. (4) for the Li+•DBM•TOPO and Li+•LIX54•TOPO systems. Those conditions where the extractant is 
repeated, e.g., in the case of LIX54, TOPO or DBM, have not been taken into account. As can be observed, the Li+•DBM•TOPO system gives higher 
selectivity values in all cases, where HBTA and HFDOD extractants providing the highest selectivity values, 520 and 660 respectively.

Figure 1. Selectivity of Li+ respect 
to Na+, K+, Mg2+, Ca2+ and Sr2+ 
(log. scale)

Conclusions
The results obtained after these simulations will contribute to increase the knowledge regarding the selective extraction of Li+ in desalination 
concentrates, thus, reducing the experimental work required in these studies. Considering the results obtained in this work, it is expected, that the 
ternary mixtures DBM•TOPO•HFDOD and DBM•TOPO•HBTA will provide the highest selectivity of Li+.
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Abstract: Hazardous industrial wastes with a high metal and acid content such as spent acids (SP) can be considered secondary 
sources of raw materials and they should be managed following the principles of Circular Economy. Chelating resins have received 
considerable attention as separation agents due to their high efficiency and selectivity toward toxic metal cations. In this work, SP 
effluents containing Ni2+ (≈12 g L−1), Cu2+ (≈2 g L−1) and Fe2+ (≈30 g L−1) in sulphuric acid were treated with the commercial 
chelating resin Puromet™ MTS9600 with bis-picolylamine moieties (Bis-PMA) in order to allow the selective recovery of copper. 
At pH=1.0, 80% of Cu2+ was selectively adsorbed with low separation of Ni2+ and Fe2+ (≈10%). Finally, the mathematical model 
to describe the adsorption of Cu2+ was proposed, considering as the controlling stage the metal diffusion through the pore. The 
parametric estimation was carried out by Aspen Custom Modeler software, obtaining the mass transport apparent coefficient 
solid phase kS = 0.12 h-1, with a relative error lower of 15.0%.
Keywords: Spent acids, Chelating resins, Copper, Mathematical Modelling

Introduction
Today, demanded metals are affected in some cases by scarcity and continuous increases in cost; therefore novel strategies to carry out their 
recovery from secondary sources should be designed in the framework of the Circular Economy that aims at minimization of waste generation 
and raw materials consumption. 
Industrial wastewaters containing heavy metals in acid medium, give rise to hazardous waste streams with complex and varied compositions. 
Therefore, the removal and recovery of metals from spent acids has received considerable attention from the scientific community. Among 
different technologies, solid-phase separation with materials functionalized with chelating ligands has reported, high efficiency and selectivity in 
the removal of metals (Ulloa et al., 2020a).
In previous works, spent acidic effluents containing nickel (≈12 g L−1), copper (≈2 g L−1) and iron (≈30 g L−1) in sulphuric acid media were treated 
with commercial chelating resin Puromet™MTS9600 functionalized with Bis-PMA groups in order to generate two streams enriched in copper and 
nickel, respectively. At pH 1.0, this resin is able to obtain excellent separation results with removal percentages of copper≈80% versus nickel and 
iron (≈10%). Subsequently, the adsorption equilibrium of copper was described by the Langmuir isotherm (Ulloa et al., 2020a).
In this work, the mathematical model to describe the adsorption of Cu2+ with the MTS9600 chelating resin in a fixed bed column is reported. The 
model that includes the microscopic and macroscopic mass balances in the column, considers that the kinetic controlling step was the diffusion of 
the metal through the pore. The model parameters were calculated with mass transport and fluid-flow correlations. The mass transport apparent 
coefficient solid phase kS was mathematically estimated by the comparison of simulated and experimental data using Aspen Custom Modeler 
(Aspen Tech).

Experimental section
Materials
Adsorption with chelating resins was applied to treat real industrial exhausted sulphuric acid-based baths with the following characteristics: Ni2+ 
(≈12 g L−1), Cu2+ (≈2 g L−1), Fe2+ (≈30 g L−1) and pH≈1.0. The chelating resin used for the recovery of copper was Puromet™ MTS9600 functionalized 
with Bis-PMA supplied by Purolite.
Experimental methods
Adsorption experiments were performed in a column (effective length of 0.19 m and an inner diameter of 0.03 m) to describe the kinetics of the 
selective adsorption of copper against nickel. The feed solution was circulated through the column in a continuous and downward mode with a 
flow rate of 3.4·10-4 m3 h-1 using a peristaltic pump (Watson Marlow). Samples were taken during the treatment at column exit and the copper 
content was determined by Microwave Plasma-Atomic Emission Spectrometry (Agilent, Spain).

Results
Adsorption kinetics of Cu2+

As shown in Figure 1, only, the copper adsorption is described by a breakthrough curve since Ni and Fe removal is expected to be negligible; 
Cu2+ concentration increases, achieving an asymptotic concentration of 80% of the initial concentration after 20 operating hours. Nevertheless, 
Ni2+ and Fe2+ were adsorbed minimally, around 10%, as was expected, since working at pH values lower than 2.0, where their adsorption is not 
favoured.
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Figure 1. Breakthrough curves of Cu2+. 
Adsorption of Ni2+ and Fe2+

Modelling of Cu2+ adsorption in fixed bed
The mathematical model that describes the breakthrough curve of Cu2+ consists of: i) the mass balance equation of the column (Eq. (1)), ii) the 
equilibrium equation and iii) a set of equations describing external and internal mass transfer phenomena. Based on previous results (Ulloa et al., 
2020a) it was concluded: i) equilibrium data for Cu2+ adsorption with Puromet™ MTS9600 resin are described by the Langmuir model (Eq. (2)), ii) 
the dispersion term in the fixed mass balance should be taken into account due to the operation at low flow rates, iii) diffusion in the liquid film 
should be considered as a controlling stage (Eq. (3)), and iv) diffusion in the pore (internal diffusion) in the controlling step (Eq. (4))
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Where C is Cu2+ concentration, mg L-1; q is Cu2+  concentration in the resin, mg kg-1 (resin); εB=0.5 is bed porosity; ρF=1.100 kg m-3 is fluid density; 
νF=0.45 m3 h-1 is linear velocity; Dax=1.16 10-3 is axial dispersion.

Where Ceq is Cu+2 concentration in the equilibrium; qeq is Cu+2 concentration in the resin in equilibrium; qm=48,000 mg kg-1_dry resin; KLg=9.1 
10-2 L mg-1.

Being Ap=8,425 m2 m-3 external surface area; kL=5.5 10-2 m h-1 mass transport coefficient liquid phase.

Where ks is the mass transport apparent coefficient solid phase to estimate.

The mathematical model was solved using the software Aspen Custom Modeler V12.1 (Aspen Tech) and solver options: Estimator=Least Squares, 
Solver=NL2SOL, maximum iterations=100, relative function tolerance=1.0 10-4 absolute function tolerance=1.0 10-20 and solution convergence 
tolerance=1.0 104. Finally, ks estimated was 0.12 h-1. The fitting between experimental and simulated data is shown in Figure 1.

Conclusions
This study reported the mathematical modelling of an adsorption process to remove Cu2+ from SP using Bis-PMA chelating resins. The process 
was limited by the mass transfer resistance in the pores of the resin. In a further step, the separation of nickel and iron and the process scale up 
will be studied. 
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Abstract: In view of meeting the Paris Agreement, it is important to decarbonize current technologies, particularly in the 
petrochemical industry. Carbon capture and utilization (CCU) has gained attention in recent years because it has the potential 
to reduce emissions whilst generating valuable chemicals, such as methanol and olefins. Within the general field of CCU, this 
work performs an absolute environmental sustainability assessment (AESA) based on the planetary boundaries (PBs) framework 
to quantify the environmental benefits of producing ethylene through the direct synthesis of CO2 using renewable H2 (dSyn). 
The results show that the direct catalytic route has the potential to decarbonize the olefins market, as it significantly reduces the 
pressure applied on the climate change-related PBs. Moreover, it is possible to meet the global demand for ethylene within PBs 
via dSyn deploying H2 from electrolysis powered by nuclear.
Keywords: Direct ethylene synthesis, carbon capture and utilization, planetary boundaries, life cycle assessment

Introduction
Carbon capture and utilization (CCU) has the potential to reduce emissions whilst generating valuable chemicals. Ioannou et al. (2020) discussed 
the environmental benefits of employing CCU for the production of light-olefins (C2-C5) via CO2-to-methanol and methanol-to-olefins (MTO), 
showing that this route enables a drastic reduction in environmental impacts with respect to naphtha steam cracking, the business-as-usual (BAU) 
route.
Although effective, the MTO comes with two main limitations. Catalysts require frequent regeneration due to coke formation, and the equilibrium 
limited methanol synthesis from CO2 hydrogenation. Studies of bifunctional catalysts have progressed in recent years, in order to simplify this 
two-step process, allowing for in situ synthesis of olefins from syngas, which could overcome both limitations (DeWilde et al. 2021). 
Here we assess for the first time the environmental feasibility of the direct synthesis of CO2-to-olefins (dSyn) deploying electrolytic H2, against 
planetary boundaries.

Methodology 
Process description – direct synthesis of olefins from CO2 
A simulation was carried out in Aspen Plus V12. CO2 and H2 are fed (ratio 3:1) to the dSyn reactor, which operates at 390 ⁰C and 21 bar. The direct 
synthesis was modeled in a plug flow reactor, with kinetic data for a bifunctional catalytic bed consisting of the conventional Cu–ZnO–Al2O3 
catalyst, typically used for CO2 hydrogenation to methanol, and the SAPO-34 catalyst, widely used for MTO. The subsequent separation steps were 
modeled as in DeWilde et al. (2021). 
Absolute environmental sustainability assessment (AESA)
The environmental assessment followed the guidelines of the ISO 14040 (2006), using data of global activities from Ecoinvent 3.5 (Wernet et al. 
2016) in Simapro 9.2. The assessment follows a cradle-to-gate approach, using the “cut-off by classification” allocation method. 
The life cycle impacts were calculated with the absolute environmental sustainability assessment (AESA) method based on the planetary 
boundaries (PBs) framework (Rockström et al. 2009 and Steffen et al. 2015), using the characterization factors developed by Ryberg et al. (2018) 
and Galán-Martín et al. (2021). The framework introduces boundaries for nine control variables linked to seven Earth-systems:  climate change 
(CC), quantified via the atmosphe-ric CO2 concentration (CCCO2), and the energy imbalance at the top of the atmosphere (CCEI), stratospheric 
ozone depletion (SOD), ocean acidification (OA), biogeochemical flows of nitrogen (BGFN) and phosphorus (BGFP), land-system change (LSC), 
freshwater use (FWU) and changes in biosphere integrity (CBI).
The transgression level of each scenario s from PB b (TLb,s) was calculated with respect to the downscaled safe operating space attributed to 
ethylene production (SOSeth,b) and the scenario’s total environmental impact (Elb,s). Elb,s and TLb,s were calculated according to Eq. (1) and (2) 
respectively, where ls,f is the quantity of elementary flow f associated with the production of 1 kg of ethylene, CFbare the characterization factors 
defined for each PB b, and FU the functional unit (the global demand of ethylene).

(1)

(2)

EIb,s = ∑
f∈F

 Is,f · CFb · FU ∀ b, s

 TLb,s=
EIb,s

SOSeth,b
 ∀ b, s

(1)

(2)

EIb,s = ∑
f∈F

 Is,f · CFb · FU ∀ b, s

 TLb,s=
EIb,s

SOSeth,b
 ∀ b, s
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The SOSeth,b was downscaled following the utilitarian principle (Ryberg et al. 2020), using the gross value added (GVA) of ethylene, and the global 
GVA.

          (3)SOSeth,b = SOSGLO,b
GVAeth

GVAGLO
 ∀ b

The life cycle inventories considered impacts from raw materials, electricity, process utilities, products, and direct emissions, disregarding the 
end-of-life of the plant infrastructure and use phase of the produced ethylene. Five technologies were assessed: the BAU route, fossil-MTO from 
conventional methanol, and dSyn deploying CO2 captured from a natural gas power plant and H2 obtained via electrolysis powered by solar, wind 
and nuclear power.

Results and Discussion
The results show that utilizing renewable H2 and CO2 from CCU in the dSyn route enables a significant reduction of the impacts of ethylene 
production on CC related PBs, notably in the CC related Earth-system processes. Indeed, the fossil routes (fossil-MTO and BAU) transgress CC-CO2 
and CC-EI (TL>1) whilst the dSyn routes operate within these boundaries (TL<1). Deploying CCU leads to negative emissions in the ethylene 
synthesis, as opposed to fossil routes, which exert high pressure on the corresponding carrying capacities, thereby transgressing these PBs.
dSyn-nuclear is found to operate within PBs, as it does not transgress any of the boundaries. Burden shifting can be observed for dSyn-solar and 
dSyn-wind due to the impacts related to the energy source used in the H2 production. Indeed, both transgress BGF-N and dSyn-solar CBI as well.
Ethylene from dSyn could contribute to decarbonizing the petrochemical sector, notably in the production of polymers for packaging. In fact, 
ethylene from CCU and nuclear-H2 operates within PBs.

Figure 1. Transgression level relative to the SOSeth of the assessed scenarios of ethylene production

Acknowledgments
This publication was created as part of NCCR Catalysis (grant 180544), a National Centre of Competence in Research funded by the Swiss National 
Science Foundation.

References
DeWilde, J.F., et al. (2021) Kinetics of Direct Olefin Synthesis from Syngas over Mixed Beds of Zn-Zr Oxides and SAPO-34, Ind. Eng. Chem. Res., 60, 39.
Galán-Martín, Á., et al. (2021) Sustainability Footprints of a Renewable Caron Transition for the Petrochemical Sector within Planetary Boundaries, One Earth, 4, 4.
Ioannou, I., et al. (2020) Hybridization of Fossil- and CO2-Based Routes for Ethylene Production using Renewable Energy, ChemSusChem, 13, 23.
ISO (2006), ISO 14040:2006(E): Environmental Management – Life Cycle Assessment – Principles and Framework, International Standards Organization.
Rockström J., et al. (2009) Planetary Boundaries: Exploring the Safe Operating Space for Humanity, Ecol. Soc, 14, 2:32.
Ryberg, M.W., et al. (2018) Development of a Life-Cycle Impact Assessment Methodology Linked to the Planetary Boundaries Framework, Ecol. Indic., 88, 250-262. 
Ryberg, M.W., et al. (2020) Downscaling the planetary boundaries in absolute environmental sustainability assessments – A review, J. Clean, 276, 123287.
Steffen, W., et al. (2015) Planetary boundaries: Guiding human development on a changing planet, Science, 347, 6223.
Wernet, G., et al. (2016) The ecoinvent database version 3 (part I): overview and methodology, Int J Life Cycle Assess, 21, 9.



76

THEME 4 
Green and sustainable processes 
for the circular economy

Theme 4: Green and sustainable processes for the circular economy

Paper 786

Evaluating the potential of current and emerging alternatives to enable a Sustainable 
Circular Economy

Vyom Thakker1, Amrita Sen1, George Stephanopoulos2,3, Bhavik R. Bakshi1 
1William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, 43201 
2The Global KAITEKI Center, Arizona State University, Tempe, Arizona 85287, USA 
3Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract: Industry and governments are pledging to achieve sustainability and circularity targets to mitigate climate change and 
pollution by as early as 2030, without a clear indication of a concrete plan of action. This is partly due to the oversight of potential 
innovations, emerging technologies and policy interventions. The objective of this work is to guide future investment strategies 
in eco-innovations, based on quantitative criteria and holistic environmental impact assessment of cradle-to-cradle life cycles. A 
novel framework to screen and rank conceptual eco-innovations is developed, which relies on hot-spot and sensitivity analyses 
to identify promising sectors for screening eco-innovations and formulates a metric based on multi-objective optimization and 
technology readiness for adoption to rank the screened eco-innovations. The developed ranking can be used to guide future 
investment strategies based on holistic impact estimation, trade-offs between environmental and economic objectives, and 
innovation readiness.
Keywords: Sustainable Circular Economy, Anticipatory Life Cycle Assessment, Net-Zero Emissions, Circularity

Introduction
Current value-chains of several products need to be reformed to meet sustainability and circularity targets set by corporations and governments, 
such as The Climate Pledge, US Plastics Pact, Paris Agreement, etc. These reforms are expected to occur through development and adoption 
of eco-innovations such as new technologies, electrification, policies. and supply-chains. This work is dedicated to guiding such reforms and 
sustainability transitions through a quantitative methodology that relies on optimization and holistic environmental impact assessment methods 
such as Life Cycle Assessment (LCA). Notably, there are numerous considerations while guiding sustainability transitions, including economics, 
climate change mitigation potential, resource use and circularity. Thus, a multi-objective optimization is needed to capture trade-offs between 
these indicators while identifying optimal synergies between eco-innovations and current value-chains. This work highlights a novel framework 
developed to sequentially guide eco-innovations by screening from a large list of alternatives and ranking them based on their potential to 
improve the aforementioned objectives and reduce trade-offs. It also considers the technology readiness levels (TRL) of several eco-innovations 
and identifies potential synergies between them. As a result, industrial stakeholders can understand which eco-innovations can help them achieve 
their net-zero emissions and circularity targets, and at what expense. This framework is demonstrated for the value-chain of grocery bags, with 
eco-innovations from the packaging domain, sustainability programs/policy and supply-chain reforms.

Motivating Case Study
Grocery bags are a ubiquitous boon and bane in the society, and each household in USA requires ~4000 liters of volume carrying capacity in a 
year. The value-chain of these bags has several alternatives not only in the type of bags, but also collection methods, and end-of-life treatment 
alternatives at the Material Recovery Facility (MRF) as shown in Figure 1. The previously developed Sustainable Circular Economy (SCE) framework 
can identify Pareto-optimal SCE pathways in the conventional value-chain network (Thakker and Bakshi 2021a, b), as presented in Figure 2. Notably, 
the Pareto-front with alternatives in the conventional value-chain fail to achieve net-zero GHG emissions, and there is a need for eco-innovations 
to achieve targets by extending to the infeasible space of the Pareto-front. The developed framework screens and rank eco-innovations from the 
entire value chain using a systematic and holistic methodology.

Figure 1. Case Study: The 
Grocery Bags Value-chain 
alternatives (multiple arrows), 
quantified using LCA datasets
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Figure 2: SCE optimal solutions as Pareto-
optimal points for the conventional 
value-chain alternatives

Screening and Ranking Methodology
Since there are thousands of conceptual innovations in different parts of the value-chain to promote SCE and help meet corporate targets, it is 
essential to have a screening step to perform skillful vetting of these alternatives. The two approaches used for screening are (1) retrospective hot-
spot analysis of current value-chains, and (2) prospective sensitivity-based optimization to identify optimal perturbations of LCI data to pinpoint 
promising sectors.

Figure 3: Screening and Ranking 
Methodology (top), and futuristic 
Pareto-front (bottom) shows that 
environmental pledges can be 
met in the future with a subset of 
innovations (right)

This screening step provides a manageable subset of eco-innovations for progressive addition into the superstructure of alternatives. Optimizing 
each innovative superstructure network, yields a new Pareto-front with an improved ‘Utopia point’, representing the best independently obtainable 
objective values. The shift in Utopia point in the win-win space, along with the TRL of the innovation is considered as a ranking criterion, thereby 
guiding future investment strategies. Next, multiple innovations are combinatorically added to the superstructure to identify potential synergies 
and scope of achieving targets under these futuristic scenarios. 

Conclusions
The methodology is established in Thakker and Bakshi, 2023, and is implemented for the motivating grocery bags case study with 10 screened eco-
innovations from the packaging domain. The findings are briefly summarized in Figure 3 of this proceeding. Notably, for the case study, chemical 
recycling of biomass-derived polylactic acid bags and pyrolysis of polyethylene-based innovations can lead the grocery bags value-chain to net-
zero emissions and meeting of plastic circularity pledges. The framework can therefore guide synergistic development of infrastructure to support 
eco-innovations.
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Abstract: LiBs production has risen rapidly in recent years and become an important power storage source. It encourages the 
demand for valuable metals such as Co, Ni and Li. However, the metal resource is limited and requires high energy consumption 
and human source to exploit. Thus, the recycling of valuable metals in waste LiBs is a critical topic. There are many studies on this 
topic but most of them are on a lab scale and do not cover the real situation in the industry. This study provides a detailed techno-
economic analysis of the hydrometallurgy process application for metal recovery from LiBs on a commercial scale. The NCM622 
is chosen as the feed of the plant and is handled through all necessary sections: pre-treatment, leaching, solvent extraction and 
purification. The mass and energy balance is calculated by the commercial tool Aspen Plus. Based on the process simulation 
result, the economic feasibility of this process is evaluated. In the context of the USA industry zone, the process shows good 
economic feasibility, represented by a return on investment (ROI) of 15% and an internal rate return (IRR) of 18%. This work would 
provide a basis for an investment decision in this industry.
Keywords: Waste battery recycling, LiBs, hydrometallurgical process, techno-economic analysis.

Introduction
Due to their beneficial characteristics, such as high energy density and minimal self-discharge, lithium-ion batteries (LIBs) have dominated the 
market for batteries during the past three decades. LIBs are currently the preferred energy storage medium for portable consumer devices such as 
laptops, cell phones, and industrial applications such as electric vehicle production, stationary storage, etc. (Neumann et al., 2022). The increasing 
usage of LIBs leads to the development of reuse and recycling solutions aimed at minimizing the LIB technology's environmental impact and 
advancing the circular economy objective (Cerrillo-Gonzalez et al., 2020).
Several recycling technologies for LIBs have been developed. Among them, pyrometallurgical and hydrometallurgical techniques are the 
most used today (Mossali et al., 2020). Hydrometallurgy is advantageous to pyrometallurgical processes in terms of recovery efficiency, energy 
consumption, and gaseous emissions (Larouche et al., 2020). Recently, the majority of research efforts have concentrated on identifying a variety 
of extractants with high extraction efficiency to improve the hydrometallurgical process. Nevertheless, these investigations were conducted on a 
laboratory size and addressed just a part of the processes, not the entire process, on a commercial scale. Thus, we investigated the whole recycling 
process of all valuable metals using hydrometallurgy technology. The economic feasibility is evaluated in the context of the USA industrial market. 

Methodology 
In this study, the process is simulated by the commercial tool Aspen Plus. The proposed process contains six units: pre-treatment (discharging, 
crushing, and pyrolysis), leaching by H2SO4 and H2O2, Mn extraction by D2EHPA, Co extraction by Cyanex272, Ni extraction by PC-88A, and Li 
precipitation with Na2CO3. The metals are recovered under battery-grade form as MnO2, CoSO4, NiSO4. and  Li2CO3. The process is designed to treat 
approximately 3.9 t/h of NCM622 battery pack. The cathode material is obtained from Yang et al. (Yang et al., 2020) and showed in Table 1.

Table 1. The element composition of NCM622 (%wt)

Li Ni Co Mn Al C

5.97 34.69 11.61 11.65 8.67 2.45

The mass and energy balance result from the model was used to estimate economic indicators. The equipment cost was estimated by the capacity 
ratio method (Vu et al., 2021; Vu et al., 2020) by Eq. 1. The base size and base cost are collected from public data and literature (Qiang Dai, 2019).
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In consideration of maintenance and repair time, the operation time of the process is expected to be 8000h per year. The projected lifetime of 
the process was 20 years, which is the average lifetime of a process. The discount rate is 2.0% and an installation cost is assumed as 25% of the 
equipment cost. Based on the above parameters, the net present value (NPV) calculation was applied as Eq. 2. A positive NPV indicates that the 
investment yields a bigger return than the discounted cash flow; hence, the firm is deemed economically successful
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T is the lifetime of the process, C0 is the initial investment cost, Ct is the net cash flow over the period T and r is the discount rate. Ct is determined 
by subtracting the amount of tax, material cost, utility cost, etc. from the annual income. The ROI value is measured as the ratio of profit to 
investment followed the Eq. 3.

Result
In this section, we considered a detailed calculation for the equipment cost and economic possibilities parameter. The summary of the equipment 
cost is shown in Figure 1. The total cost of major equipment is approximately 80 M$.  Around 80% of the principal equipment expenditures are 
attributable to the separation of Mn, Co, and Ni sections. The solvent extraction segment is primarily responsible for the majority of the capital 
costs due to its high liquid flow rate treatment. Figure 1 indicates the progressive increase in equipment costs for Mn, Co, and Ni extraction, which 
is a significant factor. As Ni extraction is the final extraction step, the volume of aqueous input entering the reactor is the largest compared to 
previous extraction processes.

Figure 1.   Equipment cost 
of the process

The ROI, IRR, and NPV of the proposed method are 14.8 percent, 18.4 percent, and 474.1 million dollars, respectively. There is a lack of research 
to assess these economic indicators, thus, similar project economic outcome is compared. According to China Everbright Securities, the ROI for 
recycling LFP batteries ranges from 6.1 to 16.2, depending on the price of the battery (Lima et al., 2022). According to McKinsey analysis, the 
investment in a new market with new technology typically accepts 8-12% of IRR, while for most chemical plants IRR is 9-12%. The ROI of 14.8% and 
the IRR of 18.4 years indicate that this approach has great potential.

Conclusion
This research estimated the techno-economic feasibility of hydrometallurgical technology in the specified case of commercial NCM622 batteries. 
The analysis figured out that the series of solvent extraction units could recycle valuable metals of battery-grade quality while the return on 
investment is acceptable. At the capacity of 3.9 t/h of the battery pack, this process cost 80 million dollars. However, the process can get 474 
million dollars of NPV and achieve 15% of ROI. In the context of the declining supply of the main metals (Ni, Co, Li) from mines, it is expected that 
the high possibility result will encourage the commercialization of this process. 
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Abstract: This work simulates a Power-to-Liquid (PtL) process to produce synthetic crude (syncrude) via Fischer-Tropsch (FT) 
synthesis, from CO2 emitted from an industrial source combined with renewable H2. The introduction of CO2 and H2 recycling 
streams, with the additional equipment and utilities for the separation steps, has been proved advantageous from an economic 
and environmental perspective, for the electricity, medium pressure steam, and hydrogen prices considered. Compared to 
conventional fossil crude, economically, the PtL process led to higher costs than the typical price of Brent crude oil, but could 
have a less environmental impact, if by-product valorization is considered.
Keywords:Synthetic Fuels, Power-to-Liquid Process, Techno-Economic Analysis and Environmental Assessment

Introduction
Synthetic fuels are expected to play a relevant role in energy transition: they can be obtained from CO2 that would otherwise be emitted to 
the atmosphere; they act as an important renewable energy storage medium, if Green Hydrogen is used for their synthesis; and they require 
no change to the existent infrastructures. Indeed, the International Energy Agency estimates around 7.5 Mton of CO2 per year would be used 
for synthetic fuel production in a NetZero by 2030 scenario (IEA,2022), and in 2022, the European Parliament markedly increased its ambition 
regarding aviation decarbonization, amending the ReFuelEU Aviation proposal to introduce a minimum share of 50% by 2050. 
In the literature, techno-economic analysis (TEA) indicates that PtL pathways lead to syncrude productions more expensive than fossil crudes, with 
the main cost driver being the H2 price, even at the target price is of 2 €/kg (Zang, 2021).
Regarding the environmental assessment (EA) of PtL applications, CO2 is usually modelled as being captured from a Direct Air Capture unit 
(Micheli, 2022), which ultimately leads to significant life cycle benefits since the GHG emissions of combustion are neutral. Therefore, the potential 
of PtL in utilizing industrial CO2 utilization from industry to simultaneously reduce those industries’ emissions and the transport sector is often 
overlooked (CSI ECRA, 2017). Thus, this paper addresses such gaps by assuming CO2 capture from a refinery and by modelling the process 
assuming state-of-the-art conversions and thermodynamic limitations of each process unit.
The PtL process consists of 3 main stages; 1) Reverse Water Gas Shift Reaction (RWGS), to transform CO2 into CO; 2) Fischer Tropsch (FT) reaction, 
a polymerization reaction, in which CO and H2 react to produce heavier hydrocarbons; 3) Syncrude separation to separate long chain from short-
chain hydrocarbons. To maximize syncrude production, three recycling streams can be considered 1) the unreacted CO2 from the RWGS reaction; 
2) the CO2 emitted from the light gases combustion; 3) the H2 remaining after the FT reaction. 
The processes were simulated in Aspen Plus ® using the Peng-Robinson property model, recommended when hydrocarbons and light gases are 
present, and the NRTL-RK model for process sections containing electrolytes. For the RWGS, a kinetic model developed by (Vázquez, 2017) was 
used, the CO2 conversion was set to 70% and the feed ratio of H2/CO2 was adjusted to approximately 2 at reactor outlet. For the FT reaction, 
the kinetic model presented in the work of (Pandey, 2021) was implemented, considering the production of paraffins (CnH2n+2) and olefins 
(CnH2n) within the range C1-C30, assuming a CO conversion of 70 %. For the case where recycling is considered, the CO2 is separated by chemical 
absorption, where Monoethanolamineis used as an absorbent, whereas H2 is separated by a Pressure Swing Adsorption. A heat exchanger 
network, capable of integrating process heat and minimizing energy consumption, was also developed in Aspen Energy AnalyzerTM through 
Pinch analysis, and the heat released from the exothermic FT reaction was used to produce medium pressure steam (MPS), at 8.6 bar and 175 ºC. 
Both simulations started with a CO2 flow rate of 17 ton/h, typical of a medium size refinery fixed source. The results indicate that the introduction 
of recycle streams increases production per day by nearly 3 times, from 371 to 1000 bpd, whereas the energy content of the barrel has only a slight 
increase, from 34.5 to 36.1 MJ/kg. This was expected since the FT parameters depend on the reactants relative amount, which was fixed and kept 
very similar for both cases simulated.
The TEA proved the case with recycling streams is always more cost effective, both at the current green H2 price (7 €/kg, 725 vs 646 €/barrel) and 
the target green H2 price (2 €/kg, 188 vs 172 €/barrel), while considering an electricity price of 82 €/MWh, and a steam price of 25 €/ton. However, 
even at the target green H2 price, the process is still more expensive than the conventional crude (80-100 €/barrel) .
For the EA, the functional unit, system boundaries and impact allocation between co-products followed the same framework as the TEA. Excess 
steam and electricity produced were credited with avoided burdens. Electricity is co-produced exclusively in the case study with recycling streams, 
in a Rankine Cycle and via expansion of the high-pressure steam generated in a turbine. Global Warming Potential (GWP) impact results yielded 
between -0.1 to 0.6 and between 0.6 to 1.3 ton CO2 eq / barrel for the case with and without recycling streams. The range obtained expresses 
the impact change depending on whether co-product steam and electricity are valorized. Impacts are reduced significantly when recycling is 
considered because of the 97% lower direct emissions. Compared to fossil crude, which has a GWP of 0.07 kg CO2 eq / barrel (Rangel, 2022), the 
GWP advantage of producing synthetic crude depends on the existence of recycling streams and co-product valorization. 
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Conclusions
In this work, the economical and environmental assessment of a Fischer-Tropsch PtL pathway is given. Economically, the process is more expensive 
than the conventional crude. Environmentally, the process can be less impactful than the conventional crude, when  by products valorization is 
considered.
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Abstract: Renewable energy-powered water electricity for hydrogen production is know as “green hydrogen”, which is considered 
as an environmentally friendly method among various hydrogen production technologies. However, green hydrogen can only be 
produced using renewable energy sources. Among them, liquefied natural gas (LNG) cold energy is a potential resource that has 
been recently explored for utilization. Traditionally, the LG cold energy is wasted during the vaporization process using seawater. 
However, studies have been conducted to utilized this energy in the organic Rankine cycle (ORC) as a refrigerant to generate 
electricity. This study proposes a process for green hydrogen production using the eco-friendly generated from ORC with LNG 
cold energy. The efficiency of ORC process varies depending on the type of working fluid used. Therefore, three strategies using 
C1-C3 as working fluids were developed, and a case study was conducted through techno-economic analysis (TEA) and life 
cycle assessment (LCA). The TEA was performed using the minimum selling price of hydrogen as an economic index, while the 
environmental impacts were evaluated using LCA.
Keywords: Renewable energy, Case study, Economic evaluation, Environmental evaluation.

Introduction
The increasing demand for renewable energy sources has led to the exploration of various technologies for sustainable energy production. One 
promising technology is the use of liquefied natural gas (LNG) cold energy to generate electricity and produce green hydrogen through on organic 
Rankine cycle (ORC) system. The ORC system uses a working fluid to convert the thermal energy of the LNG cold energy into electricity, which can 
then be used to produce green hydrogen.
The selection of the working fluid (WF) in the ORC system is critical, as it has a significant impact on the system’s efficiency and overall performance. 
In this study, we investigated the effect of different WFs on the ORC efficiency and propose three strategies using methane (CH4), ethane (C2H6), and 
propane (C3H10) as working fluids. 

Method 
In this study, after the simulation of process using the Aspen plus, the techno-economic analysis (TEA) and life cycle assessment (LCA) are performed 
to evaluate the economics and environmental impact of the process. 
TEA is a method of evaluating the economic efficiency of a technology or a production process when introducing new technology or designing 
a production process. In this study, the capital and operating costs of the process are calculated based on the mass and energy balance from the 
process simulation result, and the economic evaluation of the process is performed using the minimum selling price (MSP) as an economic indicator 
(Davis et al., 2018).
LCA is a comprehensive environmental evaluation method that assesses the environmental impact of the process to provide the improve point in 
terms of environmental impact. In this study, LCA is performed based on the ISO 14040 and 14044 standards and using the Ecoinvent 3.6 database, 
ReCiPe midpoint method and Hierarachist version of SimaPro (Kim et al., 2020; Artz et al., 2018).

Process development
The proposed process uses LNG as a refrigerant in the ORC system to generate electricity, which is then used to produce green hydrogen by the 
electrolysis. Strategies A-C is developed, each using a different WF (CH4, C2H6, and C3H10) in the ORC system.
Strategy A: CH4 is used as a WF in the ORC system.
Strategy B: C2H6 is used as a WF in the ORC system.
Strategy C: C3H10 is used as a WF in the ORC system.
LNG is partially vaporized through heat exchange with the WF of ORC system and completely vaporized to NG through heat exchange with seawater 
(SW).
The WF of the ORC system is pressurized by the pump, and then completely vaporized through heat exchange with seawater. The vaporized working 
fluid is used to turn the turbine and generate electricity. The WF in the gas state after passing through the turbine is liquefied through heat exchange 
with LNG, and the circulated through the ORC system to generate electricity.
The produced electricity from ORC system is supplied to the electrolysis stack, and ultimately, green hydrogen is produced through water electrolysis 
in the electrolysis stack.
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Figure 1.  Process flow diagram for Strategies A-C.

Conclusion
In this study, a process for producing green hydrogen using LNG cold energy as a renewable energy was proposed. In particular, taking into 
account the characteristics of ORC system, which is influenced by the WF, different strategies A-C using CH4, C2H6, and C3H10 as working fluids 
were designed and case study was conducted. TEA and LCA were conducted for each strategy, and the contributing factors were analyzed from 
each perspective. Additionally, the strategies A-C were compared to determine the most economically and environmentally viable process.
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Abstract: Increasing effect of CO2 emissions on the environment is pushing humanity to close the carbon loop. Since there are 
so many unavoidable or hard-to-eliminate CO2 sources, methanol synthesis is one of the most important ways of carbon reuse. 
For this reason, we investigated crucial differences between conventional methanol synthesis (from CO-rich gas) to synthesis from 
CO2 (which are a larger quantity of CO2 and H2O and active sites on the catalyst). Specifically, what are they and how catalyst 
structure changes. We correlated reaction conditions with catalyst structure changes and further those with catalytic activity. 
Microkinetic model was developed which accounts for different active sites, which can be used for a more robust operation 
control.
Keywords: Methanol synthesis, CO2 utilization, microkinetic modelling, catalyst deactivation.

Introduction
Reducing CO2 emissions is crucial to achieving a carbon-neutral future, with a possibility of sequestering a fraction of it in saline aquifers. CO2 can (and 
will have to) be used to close the carbon loop by producing methanol using renewable sources and nuclear energy. Methanol is a versatile product 
that can be used as a biofuel and can be produced from CO2 using 3 H2 molecules in a single step. Although other products such as formaldehyde, 
ethylene, formic acid, and elemental carbon can also be produced from CO2, large scale methanol synthesis appears to be the most developed and 
the product, generally, the most useful. Due to performance reasons, the thermocatalytic CO2 conversion is currently preferred over electrocatalytic 
or photocatalytic routes for methanol production. Developing better software tools and increasing computation power will lead to more precise 
control and more economical production of methanol.
There is an extensive community focused in mechanistic experimental-based descriptions of catalytic conversion of CO2, especially on Cu/ZnO/
Al2O3 catalytic system (Fujitani et al., 1995; Huš et al., 2017 a; Kattel et al., 2017). It appears that the rate methanol synthesis is heavily dependent of 
catalyst structure, such as Cu nanoparticle size (Karelovic et al., 2015; van den Berg et al., 2016), crystallite termination (Palomino et al., 2018) and Zn-
Cu contact (Fujitani et al., 1995; Kuld et al., 2016). The structure of Cu/ZnO/Al2O3 structure is very dynamic during reaction conditions, which in the 
end affects catalytic performance. Detailed modeling by combining descriptions of the main catalytic activity-affecting processes would be therefore 
highly beneficial.
A lot of work has been performed on prediction of catalytic activity on various structures. Theoretical modeling using density functional theory 
assumed different active site structures, initially starting from pure Cu(111) (Grabow et al., 2011) to Cu/ZnO(10-10) (Tang et al., 2015), to alloy-based 
descriptions ZnCu(211)(Studt et al., 2015) and CuZn/ZnAl2O4(110) (Huš et al., 2017 a) with a possibility of Zn being (partially) oxidized, (i.e. inverse 
catalyst) ZnO/Cu(111) (Huš et al., 2017 b; Kattel et al., 2017; Liu et al., 2022; Shi et al., 2022). Experimental identification together with the theoretical 
simulations of the most abundant and most active site structure is necessary, since too many factors effects the activity.

Methods
We tested commercial catalyst (Cu/ZnO/Al2O3) in a parallel packed bed reactor and expose it to various gas compositions. The samples were then 
characterized with scanning transmission electron microscopy (STEM), X-ray powder diffraction (XRD), and several others techniques to understand 
the mechanisms of structural and activity changes. We then performed long-term catalytic tests with a variation of pressure and temperature 
and short-term catalytic tests for model development in the packed bed reaction. A model of catalyst deactivation was developed. In addition, a 
microkinetic model based on structure-activity relationships and ab initio kinetic constants by Kattel et al. (2017) was developed to obtain a robust 
process description.

Findings
Through long-term catalyst ageing and characterization, we observed a correlation between copper particle sintering and steam partial pressure 
(Prašnikar et al., 2019). This mechanistic insight was used to develop the first catalyst deactivation model that considers gas composition, pressure 
and temperature (Prašnikar et al., 2022). From structure-activity relationships, we determined that Zn coverage over Cu phase is the most important 
indicator of activity along the exposed copper surface area. Zn is very mobile in the Cu/ZnO/Al2O3 catalyst; it dissolves in Cu (alloying), it starts to 
cover Cu particles, while also ZnO nanoparticles grow (coarsen) when exposed to reaction conditions. Based on this, we developed a microkinetic 
model of CO2 conversion to MeOH and CO with the concentration of Cu sites and Zn sites and an input (Prašnikar et al., 2021).
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Figure 1 (Top): A catalyst activity decrease model validation based on temperature and pressure of 
operation. (Bottom): Effect of Zn coverage on catalyst activity.

Conclusion
Current research is important in a way that it exposes critical points of commercial methanol synthesis catalysts for the future process of CO2 
hydrogenation. In addition, the models developed here consider more parameters than in current ones, which is especially important for large-
scale systems, such as methanol synthesis. Although microkinetic models are more robust than conventional models, there is a slow adoption 
due to the higher computational power needed. Therefore, some sort of simplification or better software is needed for an easier transition in the 
industry.
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Modeling the Progression of Fibrosis Regulated by TGF-B in COVID19 Patients

Mohammad Aminul Islam, Ashlee N. Ford Versypt 
Department of Chemical and Biological Engineering 
University at Buffalo, The State University of New York, Buffalo, NY, USA

Abstract: The COVID19 pandemic has created an emerging need to investigate the long-term effects of infection on patients, 
many of which suffer from pulmonary fibrosis due to impairment in the lung healing mechanism. Fibroblasts are the central 
mediators of extracellular matrix deposition during tissue regeneration, regulated by anti-inflammatory cytokines, including 
TGF-β. The TGF-β dependent accumulation of fibroblasts in the damaged site and excess collagen deposition lead to fibrosis. 
Here, we focused on modeling the mechanisms of the fibrotic process in the lung tissue during SARS-CoV-2 infection and the 
role of TGF-β in the progression of lung fibrosis. We outline our hybrid approach where continuous partial differential equations 
are used to represent the spatial dynamics of cytokines and collagen and discrete agent-based modeling is used to capture the 
stochastic evolution of cell populations involved in the immune response to infection.
Keywords: reaction-diffusion equations, agent-based modeling, partial differential equations, healthcare.

Introduction 
In response to the COVID19 pandemic, the SARS-CoV-2 Tissue Simulation Coalition was founded with the goal of developing a tissue simulator for 
the human lung subject to respiratory virus infection (Figure 1). The coalition has built a multiscale tissue simulator that models multiple scales of 
physiological processes involved in the infection that leads to COVID19 and the associated immune response in the lung (Getz et al., 2021). The 
tissue simulator (Figure 1) focuses on an agent-based (discrete, stochastic) model of the epithelial surface of lung alveoli and considers epithelial 
cells and fibroblasts of different states and rules for their interactions with immune cells such as macrophages and dendritic cells. The intracellular 
scale considers infection and viral replication, and the continuum scale includes reaction and diffusion of chemical species that signal between 
the various cells and processes. The most recent preprint version of the model (Getz et al., 2021) yields various immune responses for disease 
severity, but most have extensive tissue damage and loss as a result. Rather than seeing tissue loss clinically, fibrosis is observed in COVID19 
patients (Li et al., 2021). Our objective here is to add a submodel for the progression of fibrosis in the lung.

Methods Summary
The signaling molecule TGF-β from multiple sources is a key regulator 
of fibroblasts (cells that produce collagen and induce fibrosis). Here, 
we consider two TGF-β sources (Figure 2): (1) stationary: latent TGF-β 
released from the tissue when an infected cell is removed by the immune 
response and (2) mobile: anti-inflammatory macrophages patrolling the 
tissue to suppress inflammation release TGF-β in a dispersed fashion. For 
this submodel (Figure 2), rules for the secretion and diffusion of TGF-β 
from the two sources and subsequent interactions with fibroblasts 
(resident and recruited by the immune response) are layered onto the 
larger agent-based model via if statements based on the locations of cell 
removal and mobile macrophages. We consider collagen to be the main 
extracellular matrix insoluble fibrous component that the fibroblasts 
deposit, contributing to net fibrosis of the tissue when this fibrotic 
process does not resolve after a short healing period.

Figure 1.   (Left) The SARS-CoV-2 virus can lead to different 
levels of severity of lung damage in COVID19. (Right) 
Simplified sketch of the tissue simulator for the epithelial 
surface of lung alveoli and some of the cell types 
considered in the agent-based model.

Figure 2.   The main concepts in the fibrosis submodel: two different 
sources of TGF-β stimulate fibroblasts to produce excess collagen. The 
fibroblasts and macrophages are subject to the agent-based model rules, 
and TGF-β is modeled through a reaction-diffusion PDE. The collagen 
is considered to accumulate wherever it is secreted by fibroblasts that 
continue to migrate throughout the domain subject to various stochastic 
rules influencing their homing towards TGF-β gradients.
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Preliminary Results
For each stochastic simulation scenario, we ran the multiscale tissue simulator and then connect the fibrosis submodel. We explored the effects 
of many parameters influenced by literature values for various biological processes and the sensitivity to those approximated in the absence of 
clinical data. We quantified the populations of various cells and concentrations of cytokines over time, but the most salient results are the spatial 
patterns of and intensity of fibrotic collagen deposition under various conditions (Figure 3). We superimposed the dynamic cell population results 
from the tissue simulator onto the spatial contour map of the collagen concentration at different time points (Figure 3). We summarized these 
patterns by the area fraction of the domain covered by collagen above some baseline threshold and by the maximum of collagen concentration. 
These metrics correspond to metrics clinically reported for fibrosis. High values of both of these metrics result when the second of the TGF-β 
sources (mobile macrophages) is strongly activated and sustained over longer periods of time before being resolved or de-activated. The relative 
abundance of fibroblasts is higher than macrophages in COVID19 patients, also observed in the simulation cases we considered.

Conclusions
Quantification of collagen using the fibrosis submodel could help characterize the evolution of fibrosis in COVID19 survivors. Treatment strategies 
controlling TGF-β synthesis could also be benefited from this model. This model may also be extended to long COVID via considering chronic 
pulmonary fibrosis (Dinnon et al., 2022). The model results are an application of a multiscale hybrid continuum differential equations-based and 
discrete agent-based modeling approach that may be broadly of interest to the Computer Aided Process Engineering community. 
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Computational analysis of human ovarian cancer metabolism
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Abstract: Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020 (WHO Cancer fact-
sheet). To accelerate the otherwise slow and expensive cancer drug development cycle, several computational tools have been 
developed to help with drug discovery and optimization. In this work, we present metabolic kinetic modelling, a method that 
uses a metabolic network structure, along with multi-omics data, to study the physiology of cancer cells. We used a representative 
model of ovarian cancer metabolism constrained with thermodynamic curations and multi-omics data to produce a large-scale 
kinetic model with 494 mass balances parameterized by more than 12798 kinetic parameters. We created populations of kinetic 
parameters and estimated promising drug targets that were aligned with the current experimental and clinical trials. Overall, the 
developed pipeline allowed us to create the first kinetic model of a metabolic network of this scale, which was used to describe 
the physiology of ovarian cancer cells reliably.
Keywords: Metabolic networks, Kinetic modelling, Cancer

Introduction 
Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, and the number of cancer cases is expected to 
grow in the years to come (WHO Cancer fact-sheet). Ovarian cancer (OC) is the most lethal form of gynecological cancer; on average, only 40% of 
patients survive five years after the diagnosis when considering all types and stages of the disease (Jayde and Boughton, 2012). While many general 
and cancer-specific drugs exist, the drug development cycle is slow and contains high economic risks (Graham Patrick, 2017). For this reason, 
several computational tools have been developed to provide some early estimations about promising drug targets and early drug candidates. 
Examples include gene regulatory networks (Madhamshettiwar et al., 2012), which simulate different regulatory genes and their interactions, and 
gene essentiality methods (Pacheco et al., 2019), which simulate the active metabolic subsystems in the cell. However, gene regulatory networks 
can only provide binary information, i.e., whether a gene is a possible drug target. At the same time, gene essentiality methods only provide 
steady-state flux profiles, disregarding the dynamic responses that occur when the original perturbation (drug administration/gene knockout) is 
imposed. In this work, we present metabolic kinetic modelling, a method that uses a metabolic network structure, along with multi-omics data, to 
study the physiology of cancer cells. The kinetic modeling capabilities include the identification of drug targets for cancer elimination, calculating 
responses of organism’s or cell line’s metabolic network, and quantifying the effects of candidate drug targets on cancer proliferation.

Results
In a previous study, a representative model of ovarian cancer metabolism was produced using redHUMAN (Masid et al., 2020) to curate the model's 
size and REMI (Pandey et al., 2019) to integrate transcriptomic, metabolomic, and fluxomic data along with thermodynamic constraints. This model 
consisted of 1724 reactions and 614 metabolites spanning 57 subsystems, including glycolysis, citric acid cycle, amino acid metabolism, and lipid 
and nucleotide metabolism. The model was used in this work as a scaffold to produce with ORACLE (Miskovic and Hatzimanikatis, 2010; Hameri 
et al., 2019, 2021; Tokic et al., 2020), a large-scale kinetic model with 494 mass balances and 12798 kinetic parameters. We estimated populations 
of kinetic parameters and utilized MCA (Wang et al., 2004; Miskovic et al., 2019; Tsouka et al., 2021) to estimate promising drug targets that were 
further validated by literature, and we studied the effects of the drug administration on cancer cell growth (Figure 1). 

Figure 1. The workflow for the drug 
target discovery using metabolic 
kinetic modelling
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MCA results suggest that glycolysis, nucleotide metabolism fatty-acid synthesis and lipid metabolism show altered levels of activity and are 
essential for the OC cell’s survival. It was also shown that ATP levels of the system significantly affect OC cell growth, indicating that cancer’s fast 
proliferation demands high levels of energy.

Conclusions
Overall, the developed pipeline allowed us to create the first kinetic model of a metabolic network of this scale, which was used to describe 
the physiology of ovarian cancer cells reliably. The model can be utilized to identify novel drugs for targeting cancer cells and give insight into 
the overall network effects of already existing drug targets. Further refinement of the pipeline will pave the way for advancing researchers’ 
understanding of cancer metabolism and allow for the development of models of other types of cancers. 
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Abstract: Nontyphoidal Salmonellae (NTS) are foodborne pathogens responsible for 95 million cases of gastroenteritis, 
bacteremia, and subsequent focal infections and over 50,000 deaths yearly worldwide, imposing a significant burden on the health 
care system. The increasing antibiotic resistance of NTS bacteria requires a better understanding of their complex metabolism 
during infection. Genome-scale metabolic models (GEMs) and constraint-based optimization methods constitute powerful tools 
for studying metabolism. In this study, we reconstructed a thermodynamically constrained GEM for S. Typhimurium SL1344 and 
curated it with experimental data. We used the curated network and optimization-based computational methods to explore the 
metabolic pathway usage of NTS bacteria in the murine gut environment and gain insight into the essential metabolism of S. 
Typhimurium. Our work expands our knowledge about the biochemical capabilities of SL1344 beyond the information from the 
conventional sequence annotation and can guide further experimental studies to facilitate a better understanding of the NTS 
metabolism and, thus, the identification of targets for efficient treatment.
Keywords: Salmonella, Genome-scale model, Constrained-based optimization

Introduction 
Throughout the world, even the most common pathogenic bacteria are becoming increasingly resistant to antibiotics, posing a significant threat 
to human health. Salmonella is one of the most ubiquitous enteropathogens (Stanaway et al., 2019) and is a major cause of global morbidity and 
mortality, and imposes a substantial burden on global health (Kirk et al., 2015). Current antibiotic therapies have been proven ineffective; thus, 
new treatment strategies are needed.
S. Typhimurium faces a dense microbial community in the lower gut. This community offers health benefits to the host including the prevention of 
enteropathogen growth, a phenomenon called colonization resistance (CR) (Wotzka et al., 2017). And while CR prevents S. Typhimurium growth in 
the intestine of most exposed hosts (Simonsen et al., 2009), in some cases, the pathogen can grow in the gut and cause enteric disease. Identifying 
the key factors that allow NTS invasion will help to find ways to fight S. Typhimurium and possibly other enteropathogens that employ similar 
mechanisms. NTS bacteria pathogenicity is typically studied in vitro and in vivo in animal model systems. However, the complex environment of 
the gut lumen and the complex metabolism of NTS bacteria make the employment of computational studies necessary to accelerate research in 
the field.
Genome-scale metabolic models (GEMs) are mathematical representations of all known metabolic capabilities of a strain. GEMs have been widely 
used to study metabolism and identify metabolic interactions, drug targets, and metabolic engineering strategies (Gu et al., 2019). They, thus, 
represent a powerful framework to study NTS growth in the gut and identify new drug and therapeutic strategies targets. 

Figure 1: The workflow to reconstruct and 
curate the GEM of S. Typhimurium SL1344
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Conclusions
Here, we introduce a context-specific and thermodynamically curated (Salvy et al., 2018) GEM of S. Typhimurium SL1344 that captures the 
observed physiology of the strain in the murine gut and establish a workflow (Figure 1) to produce high-quality GEMs using experimental data. 
Using this GEM, we will study the NTS metabolism in the murine gut.
In this contribution, we generated a draft network by functional genome annotation using the RAVEN toolbox (Wang et al., 2018) and the KEGG 
database (Kanehisa and Goto, 2000), as well as the published GEM of S. Typhimurium LT2 (Thiele et al., 2011). We then used experimental data 
and the published workflow NICEgame (Vayena et al., 2022) to curate the network. The curated model can capture experimentally observed 
phenotypes, i.e., the H2/fumarate respiration driven by the import of C4-dicarboxylates (Nguyen et al., 2020).
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Abstract: Microbial communities inhabit diverse ecological environments and significantly impact our health and environment. 
However, the principles that govern the formation and evolution of microbiomes remain poorly understood. Computational tools 
enable us to untangle the inherent complexity of the communities and improve our understanding of the system. A crucial step 
in studying the dynamics of microbial communities is to identify the potential interactions between the community members. 
Such interactions might include cooperation or competition over shared resources. Due to the size and high complexity of the 
metabolic network of each organism, diverse interconnections might rise between each pair of organisms, which, consequently, 
makes unraveling the community interactions challenging. In this study, we present our novel computational method to 
reconstruct community interaction networks. Our study utilizes genome-scale metabolic models (GEMs) of the member species 
as input. It then generates all possible interactions that might arise based on the metabolic capabilities of the member species. 
The presented workflow can further guide experimental studies, reveal the underlying mechanisms driving the crosstalk between 
the microorganisms, and provide novel insights into designing robust synthetic communities for increased functionality.
Keywords: Microbial communities, Microbial interactions, Genome-scale metabolic models, Systems biology

Introduction 
Microbial communities are essential constituents of our ecosystem by their presence in, on, and around us. They are key players in many processes 
ranging from the biogeochemical cycles, biotechnology, and food production to human health and wellbeing (Rau and Zeidan, 2018; Qian et 
al., 2020). The members of the microbial community engage with each other through metabolic interactions. These interactions occur through 
cooperation or competition over shared resources which might lead to mutualistic, commensal, competitive, or predatory interactions (Großkopf 
and Soyer, 2014). Understanding these interspecific interactions is crucial for microbial ecology as they contribute to the emergent capabilities 
at the community level and might affect the properties and composition of the microbial community (Foster and Bell, 2012; Ponomarova and 
Patil, 2015). However, as each species can uptake and secrete a large number of metabolites, reconstructing this web of interactions for microbial 
communities is extremely challenging (Zelezniak et al., 2015). Computational tools have been previously used in this context to study competitive 
and cooperative, pairwise (Freilich et al., 2011) and higher-order interactions (Zelezniak et al., 2015).
In this study, we present our novel computational workflow, which employs genome-scale metabolic models (GEMs) (Gu et al., 2019) and 
constraint-based optimization methods (Heinken et al., 2021) to reconstruct complex interspecies connections. Unlike existing methods, our 
workflow systematically explores the interaction space and introduces a ranking metric based on the metabolic capabilities of each organism. 
Furthermore, our novel approach allows to integrate experimental data to explore context-specific interaction networks.

Figure 1. The workflow to reconstruct 
microbial interactions networks
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Conclusions
In this study, we applied our novel workflow to study microbial communities of different sizes. To this end, we used automatically reconstructed 
GEMs through CarveMe pipeline (Machado et al., 2018) and reconstructed the metabolic interaction networks for the core bee gut microbial 
community. Our analysis shows that most frequently cross-fed metabolites include carboxylic acids and amino acids, and the minimal environments 
supporting the community's growth consist mainly of sugars, amino acids, and vitamins. Our framework can be readily applied to study other 
microbial communities. It can be further used to study the effect of biotic and abiotic perturbations on microbial interaction networks and capture 
characteristics of different communities. We envision that our workflow will accelerate the development of dynamic and spatiotemporal modeling 
of microbial communities. Overall, our novel approach brings us closer to a comprehensive understanding of microbial communities by shedding 
light on the complex network of interspecies connections.
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A Systematic Mixed-integer linear programming approach for the solution of large-
scale metabolism and protein expression (ME-models)
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Abstract: Eukaryotic organisms play an important role in industrial biotechnology, from producing fuels and commodity 
chemicals to therapeutic proteins. To optimize these industrial systems, a mathematical approach can be used to integrate the 
description of multiple biological networks into a single model for cell analysis and engineering. One of the current most accurate 
models of biological systems includes metabolism and expression (ME-models), and Expression and Thermodynamics FLux (ETFL) 
is one such formulation that efficiently integrates RNA and protein synthesis with traditional genome-scale metabolic models. 
However, ETFL is so far only applicable for E. coli. To therefore adapt this ME-model for Saccharomyces cerevisiae, we herein 
developed yETFL. To do this, we augmented the original formulation with additional considerations for biomass composition, the 
compartmentalized cellular expression system, and the energetic costs of biological processes. We demonstrated the ability of 
yETFL to capture maximum growth rate, essential genes, and the phenotype of overflow metabolism and to sample the solutions 
space. We envision that the extended ETFL formulation can be applied to ME-model development for a wide range of eukaryotic 
organisms and facilitate simulation and analysis of the impact of different perturbations at the genomic or transcriptomic level.
Keywords: Systems biology, Metabolic and expression model, Saccharomyces cerevisiae, Genome-scale metabolic models, 
Mixed-integer linear programming, Expression system

Introduction 
Cellular expression and metabolism are interconnected (Alberts, 2002); on one side, nucleotides and amino acids, the building blocks of RNA and 
protein synthesis, are synthesized by metabolism. On the other side, expression produces enzymes which catalyze metabolic reactions. Thus, 
allocation of cellular resources to express different enzymes is important in determining the rate of metabolic reactions, and modeling expression 
alongside metabolism provides a more realistic image of what is happening in the cells.
Models of metabolism and expression (ME-models) explicitly account for expression limitations while simulating metabolism (Lerman, et al., 
2012; O'brien, et al., 2013; Sánchez, et al.). These models can capture phenotypes that traditional metabolic networks could not capture such as 
the maximum growth and overflow metabolism. However, the formulation of ME-models is inherently nonlinear and the variables have different 
orders of magnitude. Expression and Thermodynamics Flux (ETFL) is a novel and efficient formulation to reconstruct ME-models (Salvy and 
Hatzimanikatis, 2020). ETFL replaces the bilinear terms by estimating growth using a piecewise linear function. Thus, the final formulation of ETFL 
is a mixed-integer linear programming (MILP) problem. Also, the variables are scaled to reduce the numerical difficulty of the problem. The ETFL 
formulation includes thermodynamic constraints to ensure thermodynamic feasibility of the solutions (Soh and Hatzimanikatis, 2014). Finally, the 
presence of variable for metabolite, RNA, and protein concentrations makes ETFL a suitable platform to systematically integrate various omics 
data, including metabolomics, transcriptomics, and proteomics.

Figure 1: The inter-connection between metabolism and expression
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Results
Here, we amended the ETFL formulation in three aspects: (i) we amended the energetic requirements for macromolecule synthesis in the form 
of growth-associated maintenance, (ii) we improved cellular resource allocation by the model through including additional constraints, and (iii) 
we enabled implementation of multiple RNA polymerases and ribosomes. The latter is important, as it enables reconstructing ME-models for 
eukaryotic organisms. We used the improved ETFL formulation to reconstruct the first ME-model for the baker’s yeast, yETFL (Oftadeh, et al., 2021). 
We used yETFL to systematically check for essentiality of the genes. We also used yETFL to predict the maximum growth in yeast in agreement with 
the experimental observations. We demonstrated that yETFL could successfully capture the Crabtree effect, where the model predicted ethanol 
secretion and shift in O2 uptake and CO2 secretion. As the first ME-model for a eukaryote, yETFL paves the way to reconstruct ME-models for other 
higher-order organisms.

Conclusion
ETFL is a semi-automatic framework enabling efficient reconstruction of ME-models for a wide range of organisms. The reconstructed ME-models 
can be used to capture phenotypes related to protein efficiency. In addition, such models provide the possibility to calculate resource allocation 
alongside the phylogenetic tree. Finally, due to the mechanistic inclusion of RNA and protein expression, the impact of perturbations like RNA 
interference and antibiotics can be investigated using ME-models. As the first ME-model for a eukaryote, reconstruction of yETFL paves the way 
for reconstruction of ME-models for higher organisms. 
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Abstract: Nonlinear kinetic models allow us to describe the intracellular metabolic states of living organisms. However, 
constructing large-scale kinetic models is notoriously difficult due to the lack of data about the kinetic parameters characteristic 
of cellular physiology. To address this issue, we recently proposed REKINDLE (REconstruction of KINetic models using Deep 
LEarning), a novel generative-deep-learning-based framework for efficient parameterization of large-scale kinetic models that 
capture the experimentally observed metabolic responses. By leveraging the extrapolative abilities of neural networks, REKINDLE 
significantly reduces the extensive computational requirements of traditional kinetic modeling approaches. Within the framework, 
kinetic model generators (generative neural networks) designed for one study can be re-tuned and used in other studies using 
just a few data points. This way, REKINDLE significantly expands the breadth of applications of kinetic modeling. In this work, 
we present our latest efforts to bring kinetic modeling a step closer to high-throughput dynamic studies of metabolism. Kinetic 
models generated by the proposed frameworks can be used to study metabolic diseases, optimization of biosynthetic pathways, 
and sustainable production of high-added-value chemicals. The presented work will significantly reduce efforts in generating 
kinetic models and provide a valuable resource for advancing biological knowledge beyond the current state-of-the-art.
Keywords: Large-scale kinetic models of metabolism, nonlinear dynamics, generative deep learning.

Introduction 
Nonlinear kinetic models allow us to predict the cellular responses to variations in cellular and environmental conditions. However, despite the 
capability of these models to reconcile a wide range of omics data in a single mathematical platform and their potential for advancing our 
knowledge of metabolism, large-scale kinetic models are scarce. The lack of data about the kinetic parameters characteristic of cellular physiology 
hampers the development of these models. Estimating the unknown kinetic parameters requires employing elaborate computational procedures, 
limiting kinetic models' applicability. Another aspect that impedes the widespread utilization of kinetic models is the difficulty in obtaining 
specific model properties required for reliable predictions. Indeed, kinetic models must be consistent with experimental observations, locally 
stable around the steady state they are built at, provide satisfactory dynamic behavior, and be robust to parameter variations due to changes in 
genetic or environmental conditions. Consequently, the kinetic parameter space satisfying all these requirements is considerably constrained. 
Therefore, we need to develop efficient approaches for estimating kinetic parameters accessible to a broader research community and allow 
using these models for a wide gamut of dynamic studies. To address these issues and accelerate the development of kinetic models, we have 
previously proposed iSCHRUNK (Andreozzi et al., 2016). This computational approach uses classification algorithms and ORACLE (Hameri et al., 
2019; Miskovic and Hatzimanikatis, 2010) to derive values of kinetic parameters consistent with the experimentally observed physiology. Whereas 
iSCHRUNK has shown its utility in several studies (Miskovic et al., 2019; Tokic et al., 2020), as the number of properties we require from models 
increases as well as the dimensionality of the problem, it fails to capture a global nonlinear separation delineating the space with the desired 
kinetic models.

Methods and results
Feedforward neural networks, being universal nonlinear approximators, lend themselves naturally for characterizing the space of desired kinetic 
models. To this end, we have recently developed REKINDLE, a deep-learning framework based on general adversarial networks, GANs (Choudhury 
et al., 2022). The idea of REKINDLE is to train a GAN containing two neural networks, a generator and a discriminator (Goodfellow et al., 2014), using 
the parameter sets provided by ORACLE or any other traditional kinetic modeling framework (Figure 1).

Figure 1. Concept of REKINDLE
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Once the GAN is trained, we apply to the input of the Generator a vector of random variables, and if the generator is well trained, the generated 
parameter sets belong only to the subspace of kinetic parameters providing desired model properties (Figure 2). This way, by performing a 
stratified sampling, REKINDLE allows orders of magnitude acceleration in creating kinetic models. The validation tests performed for the case 
study of E. coli metabolism, including bioreactor simulations, demonstrate that the generated models satisfy all imposed properties. The results 
obtained for four conditions showed that REKINDLE improved by 38-44% the incidence of the desired kinetic models attaining a total of 97-100% 
of the incidence. Moreover, leveraging the well-known concept of transfer learning, we show that this approach allows us to scour the cellular 
metabolic states and tune the generators devised for one physiology for another physiology with just a few data points. We then go further and 
present our efforts in developing a method that directly generates parameters that give rise to desired models without requiring parameters from 
traditional kinetic modeling methods.   

Figure 2. Generating kinetic parameter 
set for model with desired properties

Conclusions
Applying ML paves the way toward high-throughput metabolism studies, accelerates model reconstruction, and advances our understanding of 
metabolism.
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Abstract: Nonlinear models can capture the temporal metabolic responses of organisms to genetic and process perturbations 
and thus serve as a starting point for strain design. Two challenges exist in this endeavor: (i) significant structural and parametric 
uncertainty inherent in kinetic modeling; and (ii) no systematic approach for using these models for rational strain design. To 
address these issues, we have developed a framework for rational strain design that employs large-scale nonlinear kinetic models 
to provide robust strain design choices. Even with high-quality kinetic models, it is challenging to determine targets that meet the 
desired design specifications because it requires simulating the metabolic network’s responses for many putative designs, which 
leads to a combinatorial explosion as the size of the metabolic network grows. We propose formulating an optimization problem 
and identifying enzymatic interventions that maintain closeness to the reference physiology while satisfying the requirements 
on specific productivity of target biochemicals. We applied the framework to devise targets to overproduce L-tyrosine in E. coli 
shikimate metabolism. We demonstrate that the obtained robust designs perform better than those devised with Metabolic 
Control Analysis. We anticipate that the framework will allow for high throughput, robust designs, and accelerated production in 
biotechnological processes.
Keywords: Large-scale kinetic models of metabolism, nonlinear dynamics, strain design.

Introduction 
Modern genetic techniques allow precise manipulation of genes for improved cellular performance. However, determining how many and which 
genes we have to manipulate to achieve desired cellular behavior remains challenging. Devising multi-target strategies that improve the specific 
productivity of target chemicals while maintaining cell viability by performing experiments requires considerable resources. Researchers often 
use kinetic metabolic models to limit the number of strategies that will be experimentally verified. However, it is difficult to identify targets 
that meet desired design specifications because this task entails computing the metabolic responses for many candidate designs. For example, 
exhaustively exploring all possible strategies for targeting three enzymes from a metabolic network of 300 reactions requires almost 4.5 million 
simulation runs. In addition, one needs to verify if the designed strains are robust and meet the desired specifications. Hence, there exists a need for 
systematic approaches that efficiently use nonlinear kinetic models. To this end, we present a computational framework called NOMAD (NOnlinear 
dynamic Model Assisted rational metabolic engineering Design) that proposes metabolic engineering strategies that satisfy the desired design 
specifications while preserving the robustness of the engineered strain by maintaining its physiology close to the phenotype shaped through 
evolution and selection (Narayanan et al., 2022). We perform this task by keeping the metabolic states (metabolite concentrations and metabolic 
fluxes) of the engineered strain close to those of the reference strain. Moreover, we test, within the proposed framework, the performance of the 
designs in bioreactor simulations. We then recommend the best-performing strains from such tests for experimental validation. We employ this 
method for devising metabolic engineering strategies to improve tyrosine production in E. coli.

Results
We used our in-house developed ORACLE framework for the generation of large-scale kinetic models of metabolism (Hameri et al., 2019; Miskovic 
and Hatzimanikatis, 2010; Tokic et al., 2020), implemented in the Python toolbox  SKiMPy (Weilandt et al., 2021), to generate a population of kinetic 
models consistent with the experimental observations acquired on the wild-type strain. The generated models contain 193 reactions and 163 
mass balances for metabolites located in the cytosol and extracellular space. We next pruned the population of models for properties such as local 
stability, experimentally observed dominant time constants (Choudhury et al., 2022), and robustness to obtain a set of reliable models for strain 
design. The refined set of 28 models to perform strain design with Network Response Analysis (NRA), a MILP optimization framework for strain 
design (Tsouka et al., 2021) for two cases allowing 5-fold and 2-fold change in the activity of target enzymes.

Figure 1. Bioreactor 
simulation runs for 
the allowed 5-fold 
(left) and 2-fold (right) 
enzyme activity 
change: time evolution 
of L-tyrosine titer 
(median and region 
between 1st and 3rd 
quartile responses of 
28 models showed) 
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For comparison, we also devised strain designs using the well-known metabolic control analysis (MCA) (Hatzimanikatis and Bailey, 1996; Miskovic 
et al., 2019).

Figure 2. Bioreactor 
simulation runs for the 
allowed 5-fold (left) and 
2-fold (right) enzyme 
activity change: growth 
time evolution

We then tested the strain designs in a bioreactor setting set up in such a way to provide near-real-world conditions. The obtained results from 
bioreactor simulations demonstrate that NOMAD provides consistently superior designs to MCA for both 5-fold and 2-fold allowed change in 
the enzyme activities. The final median L-tyrosine titers improved to 0.005M and 0.0029M for the NOMAD designs with 5-fold and 2-fold enzyme 
activity changes, respectively (Figure 1), whereas the growth remained close to the one of the wild-type strain (Figure 2). In contrast, an MCA design 
with 5-fold changes in enzyme activities veered far from the robust physiology with low cell viability (Figure 2). MCA designs with 2-fold changes 
showed improvement over the wild-type strain but were inferior to NOMAD strains. These results demonstrate the importance of maintaining 
physiology close to the wild-type.

Conclusions
NOMAD is a versatile framework paving the way for accelerated use of kinetic models in rational strain design.
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Abstract: The recent burgeoning of omics data generated requires the development of systematic methods for their accurate 
interpretation. Process systems engineering tools can assist in translating omics data into alterations in biological pathways 
and, therefore, provide insight into the mechanisms behind the observations. Although current methods for integrating omics 
data into genome-scale metabolic models (GEMs) can reveal many aspects of metabolic alterations, they still lack the ability to 
compare multiple conditions simultaneously. To compare these different conditions, we developed the REMI-X method. REMI-X 
is an expansion of the Relative Expression and Metabolomic Integrations (REMI) method for the generation of multiple condition-
specific GEMs in parallel. In REMI, we use differential gene expression and metabolite abundance data to obtain alternative flux 
profiles consistent with the relative omics ratios between the two conditions of interest. Here we extend this method by allowing 
pairwise comparisons of more than two conditions and ensuring the same flux profiles across unique pairs of omics ratios. We 
applied the REMI-X method to investigate the deregulation of central carbon pathway fluxes in different types of cancer cells. Our 
process engineering approach is a powerful tool for systematically studying metabolic differences in multiple condition-specific 
models.
Keywords: Metabolic networks, Omics data, Cancer

Introduction 
Continuous advances in omics technologies have enabled their ever-wide use to address various aspects of biological research (Karczewski and 
Snyder, 2018). However, one of the most critical points is how to translate this vast amount of omics data into biological knowledge. Towards this 
direction, process systems engineering tools, such as genome-scale metabolic models (GEMs), can assist in inferring mechanistic information 
behind the observations (Gu et al., 2019). Predictions on the mechanisms of pathway alteration can be enhanced by integrating omics data 
into GEMs (Machado and Herrgard, 2014). However, current methods for relative omics data integration cannot compare multiple conditions 
concurrently. These conditions might include different cell types, treatments, genetic modifications, abiotic conditions, or time points in the life 
cycle of a cell. In this work, we present the REMI-X method, an expansion of the two conditions comparison method REMI (Pandey et al., 2019). 
REMI-X enables the parallel generation of more than two condition-specific models by allowing pairwise comparisons of gene expression and 
metabolite abundance data between the pairs of omics ratios. In the REMI-X method, we formulate a mixed-integer linear optimization problem 
(Hatzimanikatis et al., 1996), where omics ratios are integrated into the optimization problem by flux-based constraints. The proposed method 
can be applied to a wide range of studies where omics data are available, either for prokaryotic or eukaryotic organisms. For example, we can use 
REMI-X to study metabolic changes in the physiological state of cultivation due to the abiotic conditions of the cell by integrating omics data as 
well as data regarding media composition. Our method also allows the comparative analysis of multiple bacterial strains in parallel to assess their 
robustness to scale up. In the present study, we apply the REMI-X method to investigate the metabolic profile of three cancer cell lines.

Results
Here, we investigate the deregulation of the central carbon pathway fluxes in three tissue-specific cancer cell lines. These cell lines include breast, 
lung, and blood cancer. First, we use the redHUMAN (Masid et al., 2020) algorithm to reduce the complexity of the human GEM Recon3D (Brunk 
et al., 2018). The reduced model comprises 673 metabolites, 1685 reactions, and 829 metabolic genes. Using the gene-protein-reaction rules, 
we map the data for gene expression (Ghandi, Huang et al., 2019) and metabolite abundance (Li et al., 2019) acquired from the Cancer Cell Line 
Encyclopedia (CCLE) database to the enzymes and metabolites in the reduced metabolic model. We then implement the REMI-X method to 
maximize the number of differential gene expression and metabolite abundance data that can be integrated into our model, and we enumerate 
the alternative solutions. More than 95% of the omics ratios can be integrated into our model. After integrating the consistent omics ratios, we 
perform thermodynamics flux variability analysis (TFVA) to define the region of feasible flux distributions for each cancer cell line. TFVA results 
show that metabolomics integration further constrains the flux distribution range and fixes the directionalities of numerous reactions. Once 
we have defined the feasible flux distributions, we then perform sampling of the solution space to obtain a set of possible flux distributions. 
The sampling values allow us to estimate the significance of the alterations in the metabolic flux rates between the different cancer cell lines. 
Finally, we compare the central carbon pathway profiles between lung, breast, and blood cancers to identify the level of each metabolic pathway 
deregulation (Figure 1).
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Figure 1. The central carbon pathways deregulation levels between lung, breast, and blood cancer cell lines.

Conclusions
Overall, the REMI-X method allows us to integrate multi-omics data into GEMs for the parallel generation of multiple condition-specific metabolic 
models. In the days of high-throughput measurements, our approach increases confidence in inferring statements for the metabolic pathways 
deregulation from observations made in health and disease conditions.
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Energy storage requirements towards net-zero emissions in Europe

Paolo Gabrielli 
Institute of Energy and Process Engineering 
ETH Zurich, 8092 Zurich, Switzerland

Abstract: This study determines the role of different types of energy storage to decarbonize the European electricity system. 
The model follows a greenfield approach and determines the optimal installed capacity and energy dispatch for all technologies 
that minimizes the total annual cost of the system, while complying with targets of zero CO2 emissions in 2050. Three types 
of energy storage technologies are considered, namely battery, pumped hydro, and hydrogen storage. The impact of spatial 
resolutions, from regional to continental, on the optimal energy storage mix is investigated.
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Introduction 
The evident consequences of climate change, convinced the leaders of over 60 countries worldwide to adopt the United Nations’ Paris Agreement 
in 2015 (UNFCCC, 2015). The central aim of the Paris Agreement is to limit global warming to well below 2 °C above pre-industrial levels by the end 
of this century. This calls for a transformation of all sectors of human activity, which must achieve net-zero CO2 emissions between 2040 and 2060 
(IEA, 2021; IPCC, 2022). Within this context, the electricity sector is riding a wave of grand transformation through a wide deployment of renewable 
energy sources, mostly wind and solar (IEA, 2021). 
Energy storage can offset the temporal fluctuations of solar and wind energy generation. It gives the possibility of storing energy during a period 
of energy overproduction, and of reusing it during periods of energy shortages (Gabrielli et al., 2018), hence removing the need for flexible 
fossil-based generation and its carbon emissions. Different types of energy storage can be more or less economically and environmentally viable 
depending on various technical, economic, environmental and geographical circumstances (Gabrielli et al., 2019; Petkov and Gabrielli, 2020; 
Petkov et al., 2021; Sepulveda et al., 2021). On the one hand, short-term storage technologies, like batteries, feature high round-trip efficiencies, 
but also high losses when storing energy for a long time (Malhotra et al., 2016). On the other hand, long-term storage systems, such as  hydrogen 
storage, are characterized by negligible losses but relatively low efficiencies (Gabrielli et al., 2020). 

Methodology
This study determines the role of different types of energy storage to decarbonize the European electricity system. It uses the Euro-Calliope 
optimization model to simulate the European electricity system in 2050 (Tröndle et al., 2020; Tröndle and Pickering, 2021), to achieve net-zero 
CO2 emissions. The model is formulated as a mixed integer linear program that determines the optimal installed capacity and energy dispatch 
for all technologies that minimizes the total annual cost of the system, while complying with constraints on CO2 emissions. Three types of energy 
storage technologies are considered, i.e., battery, pumped hydro, and hydrogen storage. A greenfield approach is adopted, hence a new system is 
designed independently of the incumbent energy system. The analysis focuses on the impact of spatial resolutions, from regional to continental, 
on the optimal energy storage portfolio. 
This work improves the state-of-the-art as follows: (1) it analyses the system at various spatial resolutions, and determines the impact of spatial 
resolutions on the assessment of energy storage requirements; (2) it models the trade-offs between short and long-term energy storage 
accounting for spatial diversity, (3) it widens the scope of existing research in Europe, which focuses on either the EU-28 or aggregate countries 
and regions, and (4) it does not restrict its scope to a fully renewable electricity system, but it investigates the impact of different strategies to 
phase-out fossil fuels on the energy storage requirements in Europe. Overall, the work provides a perspective on the role of energy storage to 
achieve net-zero CO2 emissions in Europe. 

Findings and conclusions
Findings show that different types of countries exist in Europe, where the energy storage mix is dominated by one of the different storage 
technologies. Overall, short-term battery storage best captures solar fluctuations, and is optimally combined with solar generation, while long-
term hydrogen storage smoothen both solar and wind peak generation. Also, storage requirements depend significantly on the spatial resolution 
used to perform the assessment. More specifically, the comparative assessment of different spatial resolutions shows that the amount of energy 
storage installed, and especially the amount of hydrogen storage, depends significantly on the spatial resolution of the system. Higher spatial 
resolutions (regional) result in higher wind and solar energy generation, hence in higher storage capacity. Moreover, the location of the storage 
installations change when considering different system resolutions, possibly moving from one country to the bordering regions of another.
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Optimal Design of hydrogen supply chains under demand and resource uncertainty
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Abstract: The scale-up of hydrogen supply chains is essential to achieve carbon neutrality by 2050. In this work, an optimization-
based hydrogen supply chain model is developed to investigate the optimal roll-out of hydrogen supply chains considering 
hydrogen demand and resource uncertainties. We identify biomass-based hydrogen production as the most cost-effective 
low-carbon hydrogen production option. However, electricity-based hydrogen production technologies via water-electrolysis 
increase the robustness of the solution by reducing the dependency on biomass feedstock and diversifying the technology mix.
Keywords: Hydrogen supply chains, network optimization, hard-to-abate industry, net-zero emissions pathways, decision-
making under uncertainty.

Introduction 
The industrial sector is currently responsible for 20% of the European greenhouse gas emissions (EEA 2022). Major contributors are cement 
(31%), steel (30%), and chemical industry (20%). Hence, abating the emissions of such industries is key to achieving climate goals. However, these 
industries inherently rely on carbonaceous feedstock in their production to provide carbon and/or hydrogen. Limited cost-competitive solutions 
exist to achieve net-zero carbon emissions in these industries. Therefore, these industries are often referred to as “hard-to-abate” industries. 
Hydrogen produced with low carbon emissions (i.e., low-carbon hydrogen) has the potential to decarbonize these industries (Gabrielli, Gazzani, 
and Mazzotti 2020).
Currently, hydrogen production is mostly based on steam methane reforming (SMR) of natural gas, contributing to about 3% of European 
greenhouse gas emissions (FCH Observatory 2022). One solution to abate carbon emissions is coupling SMR with carbon capture and storage 
(CCS) (Bauer et al. 2022). Other mature and economically viable solutions for low-carbon hydrogen production include water electrolysis from 
renewable electricity, gasification of biomass, and reforming of biogas. Furthermore, the coupling of biomass-based hydrogen production with 
CCS can generate net-negative process emissions. Recent evidence suggests that the scale-up of hydrogen supply chains (HSCs) is essential to 
achieve climate goals, such as the EU’s net-zero carbon emissions target for 2050 (Seck et al. 2022). 
Two quantities are key to determining the optimal design of hydrogen supply chains: (1) hydrogen demand and (2) biomass availability. However, 
their amount and their spatial distribution are uncertain. This work investigates the uncertainty associated with hydrogen demand and biomass 
availability and quantifies the impact on the optimal design of hydrogen supply chains in Europe (EU27, with CH, NO, UK) with regional spatial 
resolution, and for a multi-year time horizon from 2025-2050.

Method
HSCs are defined as networks of hydrogen production and consumption sites that are interconnected by hydrogen transport options. Hydrogen 
production can be coupled with CCS. Therefore, carbon supply chains and HSCs are co-designed to account for carbon transport from the capture 
to the storage site. The transport of biomass is also considered. 
The model is implemented as a mixed-integer linear optimization problem that minimizes cost in compliance with climate goals, such as net-
zero carbon emissions by 2050. Besides climate goals, the techno-economic performance of hydrogen production and transport technologies 
are accounted for, as well as spatially resolved data on feedstock availability, hydrogen demand, and available carbon storage sites. The model 
determines the cost-optimal type, size, and location of (a) hydrogen production, (b) carbon capture, and (c) hydrogen, carbon, and biomass 
transport technologies. In compliance with mass- and energy balances, the in-, and out-flows of (a) - (c), and the required feedstock amounts are 
computed. The decisions are time-dependent, with a yearly resolution over a multi-year time horizon from 2025 to 2050. 
A scenario-based uncertainty quantification approach identifies a discrete set of scenarios,  , with varying hydrogen demands and biomass 
availabilities.  Three levels of hydrogen demand are considered: (1) constant hydrogen demands, similar to today’s values, (2) moderate growth in 
hydrogen demands (20% increase), and (3) steep increase in hydrogen demands (50% increase). Similarly, three levels of biomass availability are 
considered: (1) full availability of the sustainable biomass potential (Panoutsou and Maniatis 2021), (2) reduced availability of sustainable biomass, 
which corresponds to about 17% of the sustainable biomass potential in Europe and is determined based on the sectoral energy demands of 
hard-to-abate industries in the EU reference scenario  (Capros et al. 2021), and (3) no biomass availability. Based on the three levels of hydrogen 
demand and biomass availability nine scenarios are derived.
To determine the cost-optimal HSC design across all scenarios, we determine the optimal HSC design for each scenario and perform an out-of-
sample analysis to investigate the performance of the HSC design for each scenario assuming the realization of the other scenarios. We allow the 
installation of additional hydrogen production and transport technologies such that hydrogen demand and climate goals are fulfilled under the 
new set of conditions. The additional costs quantify the robustness of the HSC design under the specific scenario.  Each model contains 830000 
continuous and 66000 integer variables and is solved using the commercial solver Gurobi (Gurobi Optimization LLC 2022).
The optimality of the solutions is quantified in terms of the levelized cost of hydrogen. Moreover, we determine which combinations of production 
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pathways, feedstocks, and energy sources increase the robustness of the solution. 

Conclusion
In general, a lower levelized cost of hydrogen can be expected in scenarios with high biomass availability, and low hydrogen demands. Indeed, 
biomass-based hydrogen production is identified as the most cost-effective low-carbon hydrogen production technology. For sufficient levels of 
biomass, hydrogen is predominantly produced via gasification of dry biomass (about 70%), and biomethane reforming starting from wet biomass 
(about 30%), while water electrolysis only plays a minor role (less than 5%). Even in scenarios where only 17% of the total sustainable biomass 
potential is available, hydrogen is predominantly produced from biomass. Biomass transport capacities are expanded to overcome limitations in 
the hydrogen production due to the strongly reduced biomass availability. Compared to scenarios in which the full biomass potential is available, 
the biomass transport capacity is tenfold. 
Achieving net-zero supply chain emissions by 2050 necessitates the coupling of biomass-based hydrogen production with CCS to generate the 
required carbon removal. If no biomass is available, the net-zero emissions goal cannot be realized. Nevertheless, an emission reduction of 70% 
(-35Mt) can be achieved by deploying SMR from natural gas coupled with CCS, and electrolysis, where the former enables a cost-efficient transition 
from natural-gas-based to electricity-based hydrogen production. 
Although water electrolysis is not cost-competitive when compared to biomass-based hydrogen production and SMR coupled with CCS, installing 
electrolyzers can increase the robustness of the solution as it reduces the dependency on biomass feedstock. Our findings show that additional 
hydrogen production capacities will have to be installed in most scenarios (on average between 15% to 35%) to adapt to the conditions of the 
other scenarios. However, these additional installation requirements are reduced in scenarios where electrolyzers are installed (about 15%). In 
contrast, hydrogen and carbon transport requirements are robust across scenarios. 
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Optimal Cross-sector Integrated Energy Systems to Reduce GHG Emissions Under 
Uncertainties in Demand, Fuel Prices, and Solar Irradiation

Ruonan Li, Vladimir Mahalec 
Department of Chemical Engineering 
McMaster University, Hamilton, ON, Canada

Abstract: While a high level of integration enables the reduction of GHG emissions through the coordination of energy 
production and consumption among subsystems, it also poses questions regarding the system performance if actual conditions 
differ from those employed during the system design. This work examines the flexibility of such integrated systems under 
uncertainties in demand, fuel prices, and solar irradiation. Case studies on an integrated system with a residential building, 
supermarket, confectionery plant, bakery plant, brewery, and electric vehicles show that the integrated system releases 14% less 
GHG emissions than the individually operated subsystems, even with uncertainties. However, uncertainties cause GHG emissions 
of the integrated system to increase by up to 4.5% compared to the deterministic scenario. Allowing the three plants to switch 
their production rates can mitigate impacts of uncertainties, where the GHG emissions are over 2.8% less than the integrated 
system with steady production rates.
Keywords: GHG emission reduction, Cross-sector integrated energy system, Flexible production counteracts uncertainties.

Introduction 
Integrating energy systems across different sectors is an efficient method to reduce greenhouse gas (GHG) emissions associated with meeting 
energy demands, Li et al. (2022). Most of the prior studies investigating integrated energy systems assume that energy loads, environmental 
conditions, electricity prices, and natural gas prices are known or fixed. However, the exact values of these parameters are usually unclear when 
designing the system.
This work investigates the impacts of uncertainties on an integrated system with adjustable industrial plant production rates. It intends to explore 
(1) impacts of uncertainties on the performance, optimal design, and optimal operation of the integrated system; (2) benefits of allowing plants 
to switch their production rates in resisting the impacts of uncertainties on the integrated system.  

Case study and optimization problem formulation 
The integrated cluster of energy systems being studied is comprised of a bakery plant, a brewery, a confectionery plant, a residential building, 
and a supermarket, where the production rates of the three plants can be adjusted. Electric vehicles (EVs) are formulated as an affiliation of the 
residential building. It is assumed that each subsystem has options to install equipment components shown in Figure 1. The specific size and 
operation of the equipment are decided by solving an optimization problem.

Figure 1.   The energy system of a subsystem integrated into the cluster
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This work considers uncertainties associated with hourly heating, cooling, and electricity demand of the residential building, natural gas price, and 
solar irradiation. The objective function is minimizing the total GHG emissions of all entities. It includes emissions from combusting natural gas in 
the power generation unit (PGU), the boiler, and using the electricity from the external grid. 

Results and discussion
Compared to the non-integrated system, when considering uncertainties, the integrated system with steady production rates of plants still 
releases around 14% less GHG emissions than the non-integrated system. The non-integrated system stands for individually operated subsystems 
without energy transfer. It indicates the integrated operation can still reduce GHG emissions of the entire system under uncertainties. However, 
compared to the corresponding deterministic scenario, the reductions in GHG emissions are 0.6% less. 
When industrial plants have flexible production rates, the impacts of uncertainties on GHG emissions reduction, grid electricity usage, and 
operation of the boilers can be mitigated. When considering uncertainties, the integrated system with flexible production rates releases over 
2.8% less GHG emissions and uses over 44.1% less natural gas for operating the boiler compared to the integrated system with steady production 
rates. It is due to the adjustable production rates of plants allowing the integrated system to adjust the heating and electricity transfer facing 
uncertainties. Specifically, under uncertainties, electricity transfer of the integrated system with flexible production rates is around 15.8% higher 
compared to the system with steady production rates. Thus, more heating and electricity are generated by the PGUs instead of being generated 
by the boiler and purchased from the external grid.

Figure 2.   Changes in sizes of PGU 
and Boiler of the stochastic flexible 
integrated system compared to the 
stochastic steady production rate 
integrated system

Under uncertainties, as shown in Figure 2, the three plants of the integrated system with flexible production rates have smaller boilers (19% less) 
compared to the integrated system with steady production rates. However, the flexible system has smaller PGUs (4%) but larger boilers (10%) in 
the residential building. It is due to the system with flexible production rates increasing the operation of the PGUs in the three plants to transfer 
more electricity to the residential building, which also leads to more heat being generated by the PGU. Thus, using boilers to generate heat in the 
plants is less necessary. With more electricity being transferred to the residential building, the building needs a smaller PGU to generate electricity 
locally, but a larger size boiler for heating.

Conclusions
The case study shows that flexible plant production schedules are an effective way to adapt the operation of cross-sector integrated energy 
systems in a manner that compensates for changes due to uncertainties in heating, cooling, and electrical energy demands in residential and 
other civic buildings. Flexible scheduling of industrial pants production decreases reliance on supplementary equipment and supplementary 
energy resources under unexpected scenarios. This enables provided by the integrated operation to be maintained close to its original design 
performance level. Further work will investigate the vulnerability of integrated systems to failures of individual components. 

Acknowledgments
The authors gratefully acknowledge the support from McMaster Advanced Control Consortium, and Ontario Research Fund.

References
R. Li, V. Mahalec V., 2022, Integrated design and operation of energy systems for residential buildings, commercial buildings, and light industries, Appl Energy, 305, 117822



112

THEME 6 
Multi-scale energy systems engineering

Theme 6: Multi-scale energy systems engineering

Paper 375

Introduction 
Combined cycle heat and power (CHP) plants are expected to play an important role in balancing generation of heat and electricity from non-
dispatchable renewable energy. However, the increasing share of fluctuating renewable power generation poses a paradox to CHP plant operators: 
While they are key from a system perspective to maintain the balance between demand and supply, the increasing generation from renewable 
sources results in lower operating times and consequently lower profit contribution margins for their owners. Calls for decarbonization as well as 
rising gas and emission prices further increase the financial pressure on plant operators. Retrofitting a CHP plant for hydrogen use is a prominent 
option to decarbonize (part of ) its electricity and heat generation; however, it does not necessarily improve the plants profitability (Bauer et al., 
2022, Öberg et al., 2022, Welder et al., 2019). 
In this work, we study novel and traditional options for hydrogen use at limited volumes in a CHP plant from an operator’s point of view. The novel 
option encompasses an oxy-fuel hydrogen burner (OHB) providing an additional option for heat-input to the plant’s bottoming steam cycle. In 
this OHB, hydrogen is burned stoichiometrically with oxygen in steam atmosphere to produce high-temperature steam that can be fed to the 
plant’s bottoming steam cycle (Sternfeld et al., 1989, Schastlivtsev et al., 2020). Additionally, we model a hydrogen-fueled supplementary firing 
downstream of the gas turbine (duct burner) and the admixture of hydrogen to natural gas to fire the gas turbine. The duct burner and the OHB 
increase the electric and thermal capacity and provide additional operational flexibility. The plant including the retrofitting options is modelled in 
two different frameworks: First, in a detailed non-linear process model. Second, we use the performance estimated in the non-linear model to fit a 
mixed-integer linear (MILP) model, that can determine the most profitable operation of the plant over multiple time-slices (here, over a full year). 
As such, the contribution of this work is threefold: (i) Developing a quick-to-solve but precise model of an exemplary CHP plant; (ii) Evaluating 
economically hydrogen combustion in a CHP plant from an operator perspective; (iii) Evaluating the economic benefit of retrofitting an existing 
CHP plant with components for combustion of small amounts of hydrogen.

Process Model
The process model is a static representation of an exemplary CHP plant in an industrial complex. It comprises a gas turbine, a heat recovery 
steam generator (HRSG) with two pressure levels and a steam turbo-set featuring a high-pressure steam turbine and a combined intermediate 
and low-pressure steam turbine. Process steam for industrial applications can be extracted before the high-pressure steam turbine and upstream 
of the combined medium/low pressure steam turbine, respectively. The process model implements detailed thermodynamic and fluid dynamic 
equations for all plant components, e.g. piping, pumps, heat exchangers, compressors and turbines. As such, the model can realistically simulate 
the behavior of the plant for different operating points and ambient temperatures. The process model was formulated for three different 
configurations (CHP only, CHP+duct burner and CHP+OHB) with a single load point taking around 18 seconds to solve. The detailed model is 
Siemens Energy proprietary information.

Surrogate MILP Model
The MILP model includes separate equations for the gas turbine and the recovery steam cycle. The performance of the gas turbine and steam 
turbo-set are formulated as piecewise-affine functions with ambient temperature dependency. Additionally, minimum part-load constraints are 
added. An objective function is formulated to maximize total profit Π over a considered timeframe T (here: one year). The full model depicts a 
constrained maximization problem:

Modeling hydrogen applications in combined cycle heat and power plants

Jan F. Wiegnera, Norbert Sürkenb, Ralf Neuhäuserb, Matteo Gazzania 
aUtrecht Universiy, Princetonlaan 8a, 3584 CB Utrecht 
bSiemens Energy, Rheinstr. 100, 45478 Mülheim an der Ruhr

Abstract: Combined cycle heat and power (CHP) plants are expected to play an important role in balancing generation of 
heat and electricity from non-dispatchable renewable energy. Retrofitting a CHP plant for hydrogen combustion is a prominent 
option to decarbonize (part of ) its electricity and heat generation. In this work, we study and optimize different options for using 
hydrogen in CHP plants, namely: direct combustion in the gas turbine, supplementary firing in the heat recovery boiler (duct 
burner), and oxy-fuel combustion of hydrogen for direct steam production. 
Therefore, we first model an exemplary CHP plant in a detailed non-linear process model based on the principles of thermodynamics 
and fluid-dynamics. This process model provides enough load points to fit a surrogate, mixed-integer-linear model that can 
optimize the plant operation economically within a reasonable computation time. We validate the surrogate model and use it 
to study (1) economic hydrogen combustion in a combined cycle plant, and (2) evaluate the economic benefit of retrofitting the 
plant with a duct burner or an oxy-fuel hydrogen burner.
Keywords: Combined Cycle Heat and Power Plants, Hydrogen, Oxyfuel Combustion, Gas Turbine, Steam Turbine, Steam 
Generation.
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Where Pt,i and Et,i depict the price and generation/consumption of carrier i in time slice t and Mt,CO2  
denotes CO2 emissions from the combustion 

of natural gas. The MILP model solves in 0.33 seconds on average for a single load point, which is around 55 times faster than the detailed process 
model.

Validation
The validation of the MILP model against the detailed model was performed by generating a set of random load points constrained by fuel inputs, 
and by comparing the solution for total electricity generation of the two models. Figure 1 shows the relative error in total electricity output 
between the non-linear process model and the MILP model. The absolute relative error is well below 4% and we conclude that the surrogate MILP 
model is sufficiently precise to mimic the behavior of  the CHP plant.

Figure 1: Model Validation. The histogram 
shows the distribution of relative 
difference in total electric output between 
the process model and the MILP model

Optimization Results
With the MILP model, we optimize the operation of the plant over a full year with an hourly resolution. We therefore consider ambient temperature, 
industrial steam demand and electricity prices on an hourly basis as well as a variety of different constant fuel and CO2 price combinations. The 
plant is optimized separately for the three different plant configurations (CHP only, CHP+duct burner, and CHP+OHB). The difference in profit 
between the retrofit configurations and the CHP only configuration is the additional profit possible with the respective retrofit option. These 
additional profits may be interpreted as a hypothetical acceptable annualized investment cost, the plant operator may be willing to invest for a 
specific retrofit option. The input data is shown in Table 1.

Table 1: Input Data

Value Unit

Electricity Prices Average
Std. Deviation

112
75 EUR/MWh

Natural Gas Price (range) 25 - 200 EUR/MWh

Hydrogen Price (range) 25 - 200 EUR/MWh

CO2 Price (range) 25 - 200 EUR/t

Ambient temperature Average
Std. Deviation

11.20
7.12 °C

Steam Demand (yearly sum) High Pressure
Medium Pressure

430
120 GWh
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In the CHP only configuration, hydrogen use in the gas turbine is not economic unless its cost is below the cost of natural gas (including emission 
costs). The operation of the plant follows the electricity price profile: For high prices, the plant runs at its maximum point of operation, while for 
low electricity prices, it is optimal to use as little fuel as possible to supply the steam demand, resulting in a lower electricity output.
In a next step, we optimize the two additional configurations, i.e. CHP+duct burner and CHP+OHB. We report differences in key performance 
indicators to the CHP only case (Figure 2 shows the CHP+OHB configuration). The retrofit of the plant with either a duct burner or with an 
OHB increases the profit of the plant over a large range of input assumptions. This is an effect of the ability of both components to increase 
electric output from the steam cycle at times of high electricity prices. A surprising result is the profitable hydrogen combustion for a CHP+OHB 
configuration in the case where hydrogen is more expensive than the combined natural gas and emission cost (upper left triangle in Figure 2 for 
p+

NG ≤ pH2). This results from the fact that the OHB can only burn hydrogen (and not natural gas) and its operation does not suffer from fuel price 
competition between natural gas and hydrogen. As such, the CHP+OHB configuration can increase the annual electricity output of the plant 
without any additional carbon emission while improving the profitability of the plant. 

The CHP+duct burner configuration has a slightly lower additional profit than the CHP+OHB configuration. This is due to the lower steam 
generation efficiency of the duct burner compared to the OHB.
In this work, we ignored investment costs, and the additional profits possible need to be weighed against respective investment costs. Thus, 
despite the duct burner resulting in a higher additional profit than the OHB, the higher investment cost associated to the duct burner might make 
it a less attractive retrofit compared to an OHB. Estimating valid investment costs is subject of ongoing research.

Conclusion
The mixed-integer linear model proved to be significantly faster to solve than its detailed, non-linear counterpart (0.33 vs. 18 seconds for a single 
load point), while maintaining a high precision (below 4% relative difference). This increase in computational performance makes the surrogate 
model an attractive option for multi-period, economic optimizations of the CHP plant operation.
We used the model to evaluate hydrogen combustion in a combined cycle heat and power plant and found that replacing natural gas with 
hydrogen to directly fire the gas turbine is not a business case at current hydrogen/natural gas prices. This changes only if hydrogen becomes less 
expensive than natural gas (including emission cost). 
However, both a hydrogen-fueled duct burner and an OHB makes hydrogen use in a CHP a profitable business case, also at current prices. This is 
also true if hydrogen prices are higher than natural gas prices (including emission costs).  As such, the retrofit with an OHB or a hydrogen-fueled 
duct burner can improve both, the environmental and the economic performance of a plant.
We currently working on a more elaborated analysis forthcoming in 2023 (Wiegner et al., forthcoming).
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Figure 2: Additional profit (per year and MW installed) for 
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The natural gas price includes emission costs. Current fuel 
prices are indicated for reference.
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Direct Air Capture Retrofit Analysis
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Abstract: In order to meet decarbonization goals, carbon capture technologies must be added to existing fossil fuel based 
power plants. Natural gas combined cycle plants account for a large portion of US electricity production and retrofitting these 
plants with carbon capture systems is key. In this work, we look at efficiently solving the multi-timescale optimization problem 
represented by this retrofit. Dependent design and operational decisions must be made with uncertain costing parameters (i.e. 
electricity prices and carbon credit). We propose to solve this multiscale integrated problem using hybrid formulations with 
embedded pre-trained machine learning models and derivative-free optimization solvers.  
Keywords: Surrogate modeling, carbon capture, multi-scale optimization

Introduction 
Natural gas combined cycle (NGCC) power plants are the single largest source of energy production in the United States (Monthly Energy Review, 
2022) and even aggressive forecasts of electrification and decarbonization expect NGCC to play a key role in the upcoming decades (Larson et. 
al, 2020). Coupling of NGCC and post combustion carbon capture (PCC) is one way to maintain high power output through existing plants, while 
addressing their considerable CO2 emissions. Building off research on modular Direct Air Capture (DAC) units (Sujan et. al, 2019), researchers 
have proposed a retrofit design to integrate PCC and DAC to existing NGCCs, in order to create operational flexibility and take advantage of heat 
integration opportunities, while allowing for net-negative emissions. The modularity of DAC units also allows for adaptable retrofitting of current 
plants from a design perspective. Operationally, dynamic electricity prices and CO2 costing parameters heavily influence plant power output 
and downstream carbon capture units. While this flexibility allows for robust, market-driven decisions, the size and multiple time-scales of the 
resulting optimization formulation of the integrated design and operation, may lead to intractable problems.
In this work, we propose alternative approaches to solve these problems, using embedded surrogate models to replace the operational (hourly) 
component of the optimization problem. Fast surrogate solutions allow us to quickly estimate operational responses under various price scenarios 
(electricity and CO2). We combine the surrogate models with derivative-free optimization to determine the best design decisions for the retrofit 
of the NGCC plant.

Formulation
The underlying model to describe the DAC retrofit is summarized below in Figure 1.

Figure 1.  NGCC-DAC Retrofit Model

The two design variables DACads,cap and DACsorb,m correspond to the adsorption capacity and mass of sorbent for the DAC unit. These values 
are to be set for all time points and directly affect the capital cost.  The other degrees of freedom in the model are discretized operational decisions 
such as plant load factor, amount of CO2 adsorbed ( ), and amount of CO2 desorbed ( ). These variables determine how the plant and carbon 
capture units operate at each hour given price signals and the overall DAC size available. Finally, state variables ( ) are calculated through linear 
mass balance constraints. Given all variables and costing parameters, the net present value (NPV) of the plant can be calculated. Equations 1-4 
show the multi-scale formulation:

        (1)

        (2)

       (3)

          (4)

maxNPV (yDAC, y1, …, yT )

yt = N N(yDAC, xt),  ∀tϵT

x fresh
t = x fresh

t−1 − yadsorb
t + yregen

t

x sat
t = xsat

t−1 + yadsorb
t − yregen

t

Here, yDAC refers to the design size decisions of the DAC unit and y1 denotes the 
operational variables at time t. Equation 1 is the objective function (NPV). Equation 2 is 
the NN prediction of y1 at each time step. The states of the DAC unit include fresh, adsorb, 
desorb, regeneration and saturated which are related in Eq 3-4. 
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Results and Discussion
Surrogate Performance
To create a dataset for optimal operational decisions, the model was solved 3,696 times with the following variable parameter values: (1) the DAC 
size [0, 3000 tonnes], (2) the electricity price signal for a given period T (based off historical data). T was set to be 361 hours to make sure that 
the solution captures the sorbent inventory dynamics and is representative enough while the model can be solved fast enough. The model was 
solved on an Intel i9 (16 cores) 3.10 GHz processor with 32 GB RAM. The average solution time is 2.37 s. After generating the dataset described 
above, neural network models were trained to predict load factor, yadsorbe and ydesorb as outputs given the electricity price signal, DAC size and CO2 
price. The feed-forward neural network model was trained using Tensorflow. The model consisted of two hidden layers with 100 nodes each and 
ReLU activation functions. Overall, the model is highly predictive and all 3 outputs show high test accuracy. The R2 values are shown in Table 1.

Table 1. Test Accuracy of ML Model

Variable  Test R2

Load Factor 0.9313

yadsorbe 0.9901

ydesorb 0.9611

Combined Optimization
To solve the multi-scale optimization problem, the trained NN surrogate is used as a feed forward prediction. Given values of the DAC design 
decisions a forward prediction and NPV calculation can be made in 11.3 sec. To maximize NPV, the design decisions are formulated as the degrees 
of freedom in a derivative-free optimization problem that we solve with the DIRECT method in Scipy (Jones et al, 1993). The advantage of this 
approach is that the design variables (total of 2) become the sole degrees of freedom, while the inner ML-based function becomes the “black-box” 
function call that generates the required output data. An alternative approach would be to directly use the inner operational optimization prob-
lem as the inner input-output generator, but in this case each sample required by the derivative-free optimizer will be an optimization problem 
and will have increased computational cost. 

Table 2. Multiscale Optimization Results 

CO2 Price ($/tonne) DACsorb,m (tonne) NPV (MM$) CPU (min)

150 2731 -463 45.2

225 3000 520 47.1

Table 2 shows optimal solutions of the integrated model using ERCOT pricing data and two carbon price scenarios. The integrated model solves in 
less than an hour and a positive NPV is achieved in the higher CO2 price scenario.  

Conclusions
Implementing carbon capture technology in existing plants is a critical need that requires cost effective solutions. The combined optimization of 
design and dynamic operations can be computationally intractable, so machine learning models can be used to replace the operational decisions. 
We show how this can be done with the DAC system and how the resulting multi-scale optimization problem is solved with derivative-free optimi-
zation. The integrated optimization solution provides optimal design decisions for various pricing scenarios allowing for flexible retrofit designs of 
existing NGCC power plants. Currently, we are comparing alternative hybrid and derivative-free approaches that may be applied to this problem.
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Optimal decarbonization routes for high density polyethylene manufacturing
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Abstract: In this work, we aim at presenting the structure and the preliminary implementation of a comprehensive assessment 
of different decarbonization routes for the production of high density polyethylene (HDPE). More specifically, we investigate 
possible HDPE production processes starting from renewable energy, water,  and CO2-neutral carbon feedstock. While most 
existing studies focus either on detailed technology assessments or high-level system performance, in this work we develop 
a bottom-up approach that bridges technology simulation, possible production routes (e.g. bio-based vs recycling), and 
system evaluation. Therefore, different process modules and operation units are connected and optimized for economic and 
environmental performance. As a preliminary implementation, this work shows the methodology, the challenges and the benefits 
of this bottom-up approach using one carbon-circular HDPE route case study.
Keywords: Decarbonization routes, HDPE manufacturing, process modeling, LCA, TEA.

Introduction 
High density polyethylene (HDPE) is conventionally produced from fossil fuels, which provide both the material feedstock and the required 
energy (EUROPEAN COMMISSION, 2007). At the end-of-life, most HDPE is combusted in incineration plants, disposed in landfills, or released to the 
environment (Abbas et al., 2022). From a life cycle perspective, 1 kg of HDPE emits between 1.85-4.5 kg of CO2 depending on the end-of-life route 
(Nguyen et al., 2020; Manfredi et al., 2009).
To make HDPE CO2-netural and transition to a fossil-free circular economy, we need to replace fossil fuels with the combination of renewable 
energy and CO2-neutral carbon feedstock. The latter can be supplied via biomass, non-fossil recycled carbon resources, or CO2 captured from the 
air. New manufacturing routes need to be designed and assessed accordingly. 
Currently, HDPE decarbonization routes are either qualitatively assessed or quantitatively assessed by collecting high-level technology performance 
data (Belboom et al., 2016; IEA, 2018; Zhao et al., 2018). The high uncertainty of these data, which are particularly high for low technology readiness 
level (TRL) technologies, makes the outcome results unclear and subject to significant fluctuations depending on the specific assumptions. On 
a similar note, the existing assessments can hardly be directly compared because they have different scopes and assumptions. Moreover, high-
level assessments are typically based on black-box technology models that are either tuned for very specific technology configurations or generic 
for a class/family of technologies. This makes the results difficult to compare, hardly portable to other case studies, for example with respect to 
different geographic regions or price/emission scenarios. It is equally important that such high-level technology assessments do not exploit the 
opportunity to rigorously optimize technology and process from a system perspective. 
With this contribution, we will discuss a possible solution enabled by computer aided process modeling for designing and assessing the optimal 
HDPE decarbonization routes.

Model Description
Herein, a bottom-up approach is used to model and analyze possible production process routes that convert CO2-neutral (or low-CO2) carbon 
feedstock, renewable electricity, and water into HDPE. Separate process modules consisting of operation units and material conversions are linked 
for different HDPE decarbonization routes, for example ethylene polymerization, methanol synthesis and conversion to ethylene, carbon capture. 
These process modules are coupled with techno-economic and environmental assessments and optimized systematically. The approach is aided 
by ASPEN Plus and MATLAB software which are interfaced to achieve high consistency, transparency and flexibility of the results. By conducting 
a literature review, we identified three types of renewable carbon resources (biomass, non-fossil recycled carbon sources, and CO2 captured from 
the air), eleven HDPE decarbonization routes, and twenty technologies.
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Figure 1.   One example HDPE decarbonization 
route: the studied processes are in the dashed 
box and the arrows point product streams 
(HDPE high density polyethylene; RWGS reverse 
water gas shift; STM syngas to methanol; MTO 
methanol to olefins; PP polypropylene; MSW 
municipal solid waste; CC carbon capture).

Case Study

In Figure 1, we showcase how one innovative decarbonization route performs within the developed framework. The showcase route is a circular 
carbon system: municipal solid waste (MSW) is incinerated and CO2 is removed from the produced flue gas via a carbon capture process, the 
CO2 product is converted into CO in a reverse water gas shift (RWGS) process, CO is fed into syngas-to-methanol (STM) unit, and the produced 
methanol is converted into olefins in a methanol-to-olefins (MTO) process. The main products—ethylene and propylene – are then polymerized 
as customer products, which are collected after being used as MSW, and MSW is again incinerated for circular carbon reuse. Finally, mechanical 
recycle of HDPE and PP is considered as exogenous input, i.e. it is not modeled. 
The process modules and the whole HDPE production system are optimized for costs and CO2 emissions using a derivative-free method (multi-
objective particle swarm, genetic algorithm, Bayesian optimization tool).

Conclusion
Several emerging routes exist for the production of CO2-neutral (or low-CO2) HDPE. However, these routes are mostly assessed independently 
using either very specific technology models or  from a high-level perspective. It is therefore difficult to identify what are the most promising routes 
for decarbonized HDPE production. With this work, we show how process-level design and assessment can increase the consistency, transparency 
and flexibility of the results. On the other hand, the process models are non-linear equation oriented in detail, thus the route solution consisting 
of several process models is challenging. 
For the future work, the framework will be expanded with all the identified routes and technologies, thus suggesting on the optimal decarbonization 
routes for HDPE manufacturing. 
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Abstract: A comparative feasibility analysis between industrial steam reforming of natural gas and an intensified reforming 
process by combing carbonate and chemical looping was performed. The study included the design of the flow diagrams for 
each scenario, mass and energy balances calculations and sizing of the necessary equipment. A complete economic analysis 
was conducted for both cases, including calculation of the fixed capital investment and the total annual production cost. The 
technoeconomic calculations for the two processes highlighted the superiority of the intensified reforming process, demonstrating 
almost a 16% lower levelized cost of H2 production while significantly reducing the specific CO2 emissions.
Keywords: Blue H2, Sorption enhanced chemical looping reforming, Ca-Ni looping, Technoeconomic analysis.

Introduction 
The environmental issues related to excessive use of fossil fuels, have dictated the necessity to improve the efficiency in the energy production 
sector as well as the transition towards sustainable resources. In this context, H2 is heavily supported as an energy carrier, as it is expected to 
play a key role in this necessary transition. Also, H2 demand as a primary industrial gas is continuously increasing. H2, however, is produced at 
industrial scale via steam reforming of CH4 (SMR), a particularly energy-intensive process due to the strong endothermicity of SMR and the applied 
harsh operating conditions. Moreover, multiple steps downstream the reformer are required to acquire a high-purity H2 stream, increasing the 
complexity and the cost of the process. It is clear that an intensification over H2 production is necessary.
At this direction, sorption enhanced chemical looping steam methane reforming (SE-CL-SMR) is considered as an alternative method for blue H2 
production, combining chemical looping reforming with CO2 capture (Antzara et al, 2015; Antzaras & Lemonidou, 2022). In this cyclic process, the 
reformer contains a CO2 sorbent and an oxygen transfer material (OTM). In the first step, the OTM is reduced by CH4 and serves as the reforming 
catalyst. The reaction proceeds under autothermal conditions due to the heat released by the exothermic carbonation. In the second step, the 
saturated sorbent is regenerated, with the energy provided by the OTM re-oxidation (Fermoso et al, 2014; Rydén & Ramos, 2012).
In continuation of our computational and experimental work on the process, we report herein the economic evaluation of SE-CL-SMR at large 
scale. For comparison, conventional reforming was also assessed. 

Methodology
The flow diagram of each process was designed in Aspen Plus V9 by selecting a fixed H2 production capacity of 4,500 Nm3/h with the lifetime 
of each unit set at 20 years. The conventional process was performed at high pressure (25 bar), with the reforming reactor operating at 850 °C 
followed by two water gas shift (WGS) reactors to convert the unreacted CO and a pressure swing absorption (PSA) unit where a pure H2 stream is 
separated. On the other hand, the reforming step of the intensified process operated at atmospheric pressure and 600 °C without the requirement 
of additional conversion or separation steps, and the sorbent regeneration took place in a second reactor at 850 °C. The final H2 stream was 
compressed at 25 bars in order to have a meaningful comparison with conventional SMR. The best performing sorbent and OTM, based on 
previous results derived from bench-scale experiments (Antzara et al, 2016), were also used in the simulation of this study. In both cases, a similar 
heat integration strategy was followed, with the residual energy in the product steams after feed preheating, used to generate electricity in a heat 
recovery steam cycle.
Kinetic equations for each reaction step were selected from literature, enabling the calculation of energy and mass balances. Simulation results 
were then utilized to perform a detailed economic analysis, including sizing of the necessary equipment and calculation of capital and operating 
expenses. Finally, the levelized cost of H2 production (LCOH) and specific CO2 emissions were determined for each unit.

Results    
The main cost factors calculated for each scenario are presented in Table 1. The Fixed Capital Investment (FCI) of each production unit was 
calculated based on the purchased and delivered equipment cost based on literature data, by including also several direct and indirect costs, as 
a percentage of the equipment cost. Overall, the conventional SMR presented a higher FCI due to the requirement of additional production and 
separation steps, as well as the increased equipment cost due to the harsher operating conditions applied. Comparing the annual production 
cost of the two plants, it is observed that SE-CL-SMR presents ~17% lower cost. As in both cases, natural gas constitutes a significant fraction of 
operating expenses, the increased efficiency of the intensified process led to ~15% reduction in feed requirements. This is an important aspect, 
considering the price volatility of natural gas due to the energy crisis. 
The two scenarios were compared based on their LCOH, specific CO2 emissions and feasibility in the event of volatile cost factors. For the 
conventional process, the LCOH was estimated at 3.21 $/kg H2, which is close to the cost reported for units with similar H2 capacities. In the 
intensified process, the respective cost was found ~16% lower.
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Table 1. Estimation of different cost factors for conventional SMR and SE-CL-SMR

SMR SE-CL-SMR

Fixed Capital Investment (M$/yr) 14.20 11.84

Total production cost (M$/yr) 3000 7.65

Natural gas feed (m3/h, STP) 2,032 1,736

LCOH ($/kg H2) 3.21 2.70

Specific emissions (kg CO2/kg H2) 10.83 1.40

The most important advantage of the intensified process however is the almost 90% reduction in specific CO2 emissions compared to the 
conventional unit. This is clearly illustrated by comparing the LCOH for the two cases in a possible rapid increase of the carbon tax (Fig. 1).  A drastic 
increase in the CO2 emissions tax can lead to up to 20% increased production cost for conventional SMR, while only a 4% increase is observed for 
the intensified process, rendering it as a more sustainable route for H2 production. Although a potentially lower performance of the materials at 
larger scale would narrow the gap compared to conventional SMR, SE-CL-SMR still represents an intensified, low-energy-demanding process for 
blue H2 production.
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Figure 1.   LCOH as a 
function of carbon tax

Conclusions
Intensification of SMR by introducing chemical looping and in-situ CO2 capture can lead to significantly improved efficiency, reducing the 
production cost and specific CO2 emissions by up to ~16 and ~90% respectively. In the transition period until green H2 is considered competitive, 
process intensification will be one of the most effective ways to reduce the overall carbon footprint of H2 production.
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Abstract: Considering the high greenhouse gas emissions caused by the transportation sector (24%), as estimated by IEA 
(2021), it is crucial to look into decarbonization alternatives, especially in heavy-duty road transport. This work focuses on the 
environmental assessment of future heavy-duty (HD) truck powertrains and fuel pathways, which are often assessed using 
current inventory data. To that end, we used prospective environmental inventories based on premise and sustainable integrated 
assessment models (IAM) to compare five decarbonization options; battery electric, fuel cells, internal combustion engines 
powered by the projected diesel fuel mix, e-diesel, or e-natural gas. We found that whereas the batteries and fuel cells perform 
environmentally better, synthetic fuels based on renewable carbon and green hydrogen can also provide substantial emission 
reductions for this sector. Lastly, this work shows that prospective environmental assessment could allow for a more accurate 
evaluation of future environmental impacts of the heavy transport sector.
Keywords: prospective life cycle assessment, transportation, heavy-duty trucks, integrated assessment models

Introduction 
At present, freight road transport emits 6% of European CO2 (European Parliament and Council, 2019). To reach carbon neutrality in 2050, the 
EU has developed emission standards imposing CO2 reductions of up to 15% and 30% in 2025 and 2030, respectively (relative to 2020). Several 
powertrains and fuels will play a role in fulfilling this challenging task, including battery electric (BE) and fuel cell (FC) trucks. The uptake of these 
"zero-emission" powertrains is moving slowly; thus, a portfolio of technologies is needed to achieve the above goals.
Finding the right technological mixes requires conducting life cycle assessment (LCA) studies to evaluate their environmental implications. 
Current LCAs are often based on existing data, thereby providing limited insight into the future roles of technologies in an expected economy. 
Prospective LCA has recently emerged to assess the future environmental impacts of emerging technologies by combining Integrated Assessment 
Models (IAM) scenarios with life cycle inventories (Beltran and Cox, 2018). Sacchi (2022), introduced premise, a tool that generates prospective 
inventory databases by integrating IAM scenarios. This tool enables the creation of library datasets that use future projections for a more accurate 
assessment of technologies and future supply chains. These datasets are based on the Ecoinvent database. Here we shall apply premise to the 
assessment of future low-carbon heavy trucks alternatives to shed light on their future performance. 

Methodology 
We followed the life cycle assessment (LCA) methodology to calculate the life cycle impacts from 2020 to 2050. The goal is to compare the 
environmental impacts of HD truck powertrains. The functional unit was defined as 1-tonne·kilometer (tkm), and we adopted a cradle-to-wheel 
scope following a global attributional approach. 
The life cycle inventory was calculated in Brightway2 v.2.4.2, combining data for the background and foreground systems. For 2020, background 
data from Ecoinvent v3.8 were used, while for 2030 and 2050, premise was used to generate prospective background inventories. The background 
system of Ecoinvent v3.8 is transformed using the REMIND v.3 IAM model for the sustainable SSP2PkBudg500 scenario (Aboumahboub, 2020). 
This sustainable IAM scenario assumes that CO2 emissions will peak at 500 Gt, which is compliant with the Paris Agreement target of atmospheric 
temperature increase of 1.5oC. In regards to the foreground system, the fuel pathways of hydrogen, diesel and compressed gas were developed 
based on literature data and process simulations. Notably, the scenarios considered in this work include battery electric (BE) trucks powered 
by the electricity mix, fuel cell (FC) trucks fueled with electrolytic hydrogen (H2) powered with wind power, and internal combustion engines 
with synthetic diesel (e-diesel) or fossil diesel that follow the business-as-usual (BAU), as well as, synthetically produced compressed natural 
gas (enatural gas). For the production of H2, data were taken from Bareiß (2019). For the e-diesel production, inventory data were taken from 
Medrano-García (2022), and lastly, for the production of e-natural gas, a process simulation was developed in Aspen Plus v.11 based on Chauvy 
(2020). Ediesel and enatural gas are produced by mixing CO2 and hydrogen. For this case, we consider that electrolytic H2 is powered by wind 
electricity and CO2 is either coming from a direct air capture (DAC) or pre-combustion capture from natural gas power plant (NG CCU). Lastly, for 
the business-as-usual (BAU), Ecoinvent and premise data are used. 
For the life cycle impact assessment, we chose the IPCC 2013 100a as the life cycle impact assessment method to calculate the impacts. Finally, the 
results are interpreted, and the main conclusions are summarized.
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Figure 1.   Global warming impacts. Five 
powertrains were investigated; BAU 
(ICE fueled by the market for diesel), BE 
(battery electric), FC (fuel cell), e-NG and 
e-diesel (produced from e-H2 powered 
with wind and CO2 from DAC or NG CCU)

Results and discussion
Figure 1 shows that for all the powertrains and fuel pathways, the emissions per tkm will decrease from 2020 to 2050.

Overall, the zero-carbon emission powertrains, FC and BE, perform better with the former being the best. The higher engine efficiency, lower H2 
demand per tkm and the zero combustion emissions compared to the other powertrains set these two technologies at the top of our list.
In regards to the synthetic fuels investigated here, ediesel performs better than e-natural gas. Moreover, between the fossil CO2 and renewable 
CO2 there is a 0.080.03 kgCO2-eq·tkm-1 difference for e-diesel and 0.120.03 kgCO2-eq·tkm-1 for e-natural gas. Both synthetic fuels derived from 
fossil CO2 perform worse than the BAU until 2030, with only ediesel decreasing emissions until 2050. Notably, the emissions reduction is mostly 
attributed to a greener electricity mix and engine improvements. 
Looking into the short-term solutions and motivated by the 30% reduction target set by the European Union for the sector, ediesel from renewable 
CO2 can enable alone a 24% reduction in emissions by 2030, and it could be directly fueled in already existing engines. 
The environmental superiority of zero-emission powertrains is well known; however, their slow uptake calls for alternative fuels that could be 
easily retrofitted. 
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Electrification in carbon capture and utilization: vapor recompression in green 
methanol

Juan D. Medrano-García1, Marina T. Chagas1, Gonzalo Guillén-Gosálbez1 
1Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Switzerland

Abstract: This work explores the further decarbonization of green methanol production, assessing the economic and 
environmental implications of electrifying the heating needs. To this end, we apply process simulation to model the substitution 
of the conventional distillation column with a vapor recompression column (VRC). We consider three renewable electricity 
scenarios for H2 production (wind, solar and nuclear) and compare them with and without VCR. The results show that the VRC 
technology slightly increases the cost of the synthesis, with wind electricity for H2 production leading to the cheapest production 
cost. On the other hand, nuclear H2 provides the best environmental results. This work highlights that, under the appropriate 
conditions, integrating the well-known VRC technology in the green methanol process can further improve its environmental 
appeal, especially in the future as the power mix will be gradually decarbonized.
Keywords: Green methanol, Decarbonization, Life cycle assessment (LCA)

Introduction 
With over 24 % of current anthropogenic CO2 emissions, the transport sector needs to lean more heavily towards non-fossil fuels to attain the 1.5 ºC 
goal by 2100. Synthetic fuels are one possible alternative to curb emissions in the carbon sector. Among them, green methanol from renewable 
H2 and captured CO2 has gained a special interest in recent years. However, despite reducing the carbon foorprint relative to conventional natural 
gas-based methanol, green methanol still requires fossil energy sources to cover the heating requirements. Notably, even after heat integration, 
heating utilities, often supplied by steam from natural gas, are needed either in the reboiler or to preheat the reactor feed, depending on the 
process configuration (Pérez-Fortes et al., 2016). 
Vapor recompression column (VRC) is a mature technology that consists in the compression (and consequent heating) of the top product of a 
distillation column in order to supply heat to the reboiler. In essence, VRC effectively transforms electricity into heating with high coefficients 
of performance (COP) (Kazemi et al., 2018), which allows for replacing fossil resources with electricity as energy input to the process, thereby 
potentially reducing costs and also emissions when low-carbon electricity is employed. Here, we shall explore this concept in green methanol 
production.

Methodology
Our goal is to remove all heating requirements in green methanol production. To this end, we integrate a VRC into a green methanol process 
flowsheet modeled in Aspen HYSYS v11. We design the VRC by compressing the vapor (methanol) that leaves the first tray of the column and 
then use it to exchange heat with the reboiler considering a minimum temperature difference of 10 ºC. The stream is pressurized until it reaches 
6.36 bar, which is enough for the system to require no heating utilities after heat integration. Furthermore, we consider that the purged gases are 
combusted with electrolytic O2. The CO2 produced is recycled back to the reactor, and the energy is consumed within the system.
We study 18 scenarios resulting from the combination of three sources of electrolytic H2 (wind, solar and nuclear), three electricity mixes for 
the continuous operation of the plant (current global mix, future global mix, current Swiss mix), and two different process configurations, with 
(VCR) and without the recompression technology (base case). The CO2 used in the process is assumed to be provided by direct air capture 
(DAC). We compute the economic and environmental performance based on the mass and energy flows from the model (foreground system) in 
combination with data taken from the Ecoinvent v3.5 database (background system) using the software Simapro v9.2.0.2 and the ReciPe 2016 
v1.03 methodology.

Results and discussion
The production cost of green methanol using wind, solar, and nuclear-powered electrolytic H2 for the base case and VRC scenarios is shown 
in Figure 1. Here, it can be seen that electrifying the column results in slightly higher production costs (2.0 – 2.7 %) in all cases, with wind H2 
producing the cheapest methanol, followed by solar and nuclear. This increase results from the very different volatilities of water and methanol, 
since the VRC technology is optimized for mixtures with close volatilities, such as the ethylene/ethane pair. Overall, 91.90 – 94.46 % of the cost 
contribution is associated with H2 production (65.39 – 74.69 %) and CO2 capture (19.77 – 26.51 %), while the utilities only comprise 0.36 – 0.48 %, 
with electricity ranging from 2.86 to 4.50 %.

Figure 1.   Green methanol 
production cost breakdown 
(current global mix scenario)
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Regarding the environmental assessment, Figure 2 shows that installing the VCR technology in green methanol production reduces the carbon 
production footprint only when considering low-carbon electricity mixes. For instance, if using the current mix (0.151 kgCO2-eq/kWh), VRC would 
increase the footprint. However, for a future mix scenario in 2040 (0.042 kgCO2-eq/kWh) modeled based on the World Energy Outllok 2019, the 
climate change impact would decrease by 3 %. Moreover, in a mix with lower carbon intensity (0.003 kgCO2-eq/kWh), like the Swiss one, VRC 
would lead to an 8 % improvement in carbon footprint, four times lower than in the base case current mix scenario (– 0.44 and – 0.11 kg CO2-eq/
kg).

Figure 2.   Green methanol production 
GWP impact breakdown (wind scenario)

Conclusions
In this work, we studied the complete electrification of green methanol production using the VRC technology. VRC replaces all fossil-based heating 
with electricity inputs, thereby reducing emissions when low-carbon electricity is employed instead of combusting fossil resources. We found that 
VRC leads to increased costs (~ 2 %) but a reduced carbon footprint (~ 3 - 8 %) using low-carbon electricity.
Overall, our results prove that VRC can help to electrify the methanol plant to reduce its emissions at a marginal increase in cost, even more in the 
future, as the mix gets decarbonized.
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Integrated strategic and tactical optimization of ethiopia’s bioethanol supply chain 
coupled with operational plan using vehicle routing

Tesfayesus Mamoa,b, Ludovic Montastruca, Stéphane Negnya, Lemma Dendenab 
aUniversité de Toulouse, INP-ENSIACET, 4, allée Emile Monso, F-31432 Toulouse Cedex 04, France 
bAddis Ababa University, Addis Ababa Institute of Technology, School of Chemical and Bio-Engineering, Addis Ababa, Ethiopia

Abstract: This work addresses a holistic approach to supply chain optimization by integrating the three decision levels (strategic, 
tactical and operational). To design and size the developed mixed integer liner program in a reasonable amount time, the model 
is decomposed in two sub-models: In the first stage, an integrated strategic and tactical optimization model is developed and 
in the second stage, a vehicle routing problem is developed as an operational model. To combine the optimization model with 
the operational model, a novel sequential iterative approach is designed. The optimization model is a mixed-integer linear 
programming (MILP) that maximizes the NPV of the bioethanol supply chain while the operational model is a vehicle routing 
problem (VRP) that minimizes the transportation cost. The capability of our approach is used for Ethiopia’s scenario to offer 
decision support for stakeholders, investors, and policy makers to make the bioethanol supply chain economically viable.
Keywords: Integrated, Bioethanol, Optimization, Supply chain

Introduction 
Even though the process system engineering community (PSE) faces a growing number of difficult problems, process supply chain design 
and planning continue to be a major interest offering multiple opportunities. These opportunities bring financial profitability while fulfilling 
customers’ requests for all the network entities along the supply chain. The process supply chain is described as a complicated system due to 
the variety of entities with their own objectives and characteristics, as well as the diverse network flows. Through time, the scope of planning 
and designing supply chain has been expanded by integrating the different levels of supply chain on the one hand but also by considering the 
pillars of sustainability (Barbosa-Póvoa et al., 2018). Thus, process supply chain has been the subject of intensive research by the community of 
PSE to make a significant contribution to address complex research domain extensively. The research subject of process supply chain is primarily 
addressed by developing mono or multi objective methods and tools considering decisions that range from strategic to tactical and operational 
levels  (Barbosa-Póvoa et al., 2018). 
Conventionally, biofuel supply chain planning has been done hierarchically at the strategic (long-term decisions: supply network design), tactical 
(medium-term decisions: management of network design) and operational (short- term decisions: routing) levels (Akhtari et al., 2018). However, 
a recent trend in the PSE involves the integration of both strategic and tactical level in order to contribute to intelligent and coherent decision 
making. The problem with the previous method is using solution from one level may results in inconsistent or infeasible solution (Tesfamichael 
et al., 2021). This happens because each lower planning level includes variations that are not accountable for, at higher planning levels (Akhtari & 
Sowlati, 2020). This was shown by the study of Akhtari et al. (2018) in a case study of British Columbia where the strategic optimization solutions 
were not attained at the tactical level. Thus, it is required to integrate different planning levels not only to create values but also to assure that 
plans from higher planning levels are attainable at lower planning levels.  
Another important work included in our model is the vehicle routing problem (VRP). Despite its importance and being one of the most frequently 
studied optimization problems in logistics in general, vehicle routing decisions is, most of the time overlooked in the literature related decision 
in PSE besides strategic and tactical for bioethanol supply chain. Consequently, this work will incorporate vehicle routing decisions in the 
optimization of biofuel supply chain besides the strategic and tactical decisions. As a result, the objective of the work is to address the strategic, 
tactical and operational decisions in an integrated manner and develop a hybrid optimization-surrogate model to solve the integrated problem. 
The methodology is developed in a recursive optimization-surrogate approach. This approach proposes a new multi scale resolution process 
that decomposes the problem in both time and level of decision. Thus, the model is decomposed in two stages. In the first stage, an integrated 
strategic and tactical optimization model is developed and in the second stage, based on the input from the optimization model a vehicle routing 
problem is developed as an operational model. This decomposition allows to solve an accurate model in a reasonable computational time, while 
keeping quality solution. To solve the multi scale 
problem, a novel iterative closed loop sequential strategy is proposed. The operational model uses the supply chain design determined by the 
optimization model to schedule the supply chain in order to achieve the lowest feasible transportation cost. Moreover, the operational model’s 
output is utilized to predict the optimization model’s input parameter in order to alter the supply network design based on a weekly basis. The 
improvement is done to make sure that the transportation cost in the optimization model is kept as minimum as possible. The optimization model 
is utilized as a decision-making tool for strategic and tactical design and planning in the bioethanol supply chain, with the goal of maximizing the 
net present value (NPV) while the goal of operational model is minimizing the transportation cost across the supply chain. 
To demonstrate the proposed strategy, the developed model is applied in Ethiopia to determine the optimal bioethanol supply chain. The Ethiopia 
government has included the development of biofuel as one of its development strategies since 2010 as a result of the ever-rising fossil fuel prices 
and the environmental concerns due to the excessive consumption of fossil fuels (Tesfamichael et al., 2021). In spite of the government’s strong 
desire to produce bioethanol from biomass feedstock, little has been done in the past decade to attain this objective (Tesfamichael et al., 2021). 
Table 1 displays the result of the total transport cost for each iteration . The transportation cost of the operational level is 3 times higher than the 
one without this level. This explains that the transport cost of the strategic and tactical models is estimated from the coarse-grained model where 
as in the second case it is a fine-grained model. The incorporation of the operational level to the integrated strategic and tactical decisions is an 
added value provided that there is a very detailed description of the decisions taken at this level.
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Conclusion 
In this work a novel sequential iterative approach is designed to integrate the impacts of decisions across the different levels of supply chains. 
The result of the proposed model highlights the importance of a fine modelling of the operational level on the quality it has on the strategic and 
tactical levels. The iteration between the decision-making levels ensured the consistency of the decision and demonstrates the relevance of the 
proposed approach. 
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Table 1. Comparison of the total transport cost(M$)

Iteration Transport cost for strategic and 
tactical levels (M$)

Transport cost for strategic, tactical 
and operational levels (M$)

1 2.5 7.4

1 7.4 7.4



130

THEME 7 
Sustainable supply chains 
and ecosystems

Theme 7: Sustainable supply chains and ecosystems

Paper 385

A process modeling based eco-design framework: application to the produciton of 
biomethane and CO2 capture from biogas
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TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France

Abstract: Transition towards industry decarbonization requires the eco-design of existing and new processes to cope with the 
environmental policies and reduce emissions of the processes. Therefore, processes need to be assessed in terms of technology, 
economic feasibility and environmental footprint. Nowadays, these tools exist and allow the assessment separately. It is important, 
however, to bring coherence and unify these methods to be able to change and optimize conditions that can trade-off process 
performance. In this context, this work aims at implementing an eco-design framework based on process modeling where the 
tools for calculating technical and environmental performances via Life cycle assessment (LCA) are linked to simplify the analysis 
and identify hotspots. The here proposed framework is tested on a case study considering anaerobic digestion to produce biogas 
(approx., 60% CH4, 40 %CO2) and the upgrading of biogas into biomethane (96% CH4) while capturing the CO2 contained in the 
biogas. Two upgrading technologies were compared: chemical absorption by amines (CAA) and high-pressure water scrubbing 
(HPWS). This work sets the basis for further studies where simulation results could be used to optimize the hotspots and eco-
design the studied technology at a proper scale.
Keywords: Eco-design, process modeling, co2 capture, biomethane

Introduction 
The transition towards industry decarbonization requires to guarantee that new processes report good techno-economic performances with 
low environmental impacts along the phases of their life cycle. Adaptive process modeling allows to study different process scales and provides 
the data needed to evaluate the technical and economic performances and the creation of the inventory for environmental analysis that can 
be evaluated via Life Cycle Assessment (LCA). This process modeling eco-design approach has been applied to water treatment (Bisinella de 
Faria et al., 2016) to identify the most promising development pathways and the hotspots (e.g., unit operations) requiring further improvement 
and investigation. However, several technical difficulties associated with coupling or integrating process simulators into LCA software limit the 
scope of this approach. This work aims at presenting a proof of concept platform for eco-design. This is built upon process modeling and an 
interphase to connect specialized software and allow the calculation of techno-economic and environmental performances. Biogas production 
and upgrading to biomethane (>97%) is considered as a case study to build the platform. Two alternatives for biogas upgrading are considered: 
chemical absorption by amines (CAA) (Khan et al., 2021) (Figure 1A) and high pressure water scrubbing (HPWS) (Figure 1B).

Figure 1.   (A) Flowsheet of chemical absorption of CO2 by amines. (B) Flowsheet of high-pressure water scrubbing

A Python interphase has been built to connect process models and LCA software. Anaerobic digestion for biogas production was modeled via 
the Sys-métha conversion tool (Bareha et al., 2021) whose results for biogas flow and composition were introduced to a flow sheeting software 
(ProSim) that simulates biogas upgrading via HPWS and CAA. Process models were developed to handle a wide range of input flows and to 
consider different scales. Simulation results were exported to the Python interphase and were included in Brightway (Mutel, 2017) to perform LCA 
(Figure 2A). 
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The platform has allowed to simulate the biogas production and upgrading from the renewable resources and up to biomethane and CO2 
production. Initial results have already shown that some improvements could be made to reduce environmental impacts in both studied 
upgrading technologies. Regarding climate change, HPWS emits less kg CO2-eq than CAA (Figure 2B). The main sources of emission were the 
released off for HPWS, and heat utilization followed by amine’s production for CAA. Depending on CO2 utilization, CAA could be more efficient 
since the CO2 stream has a higher purity.

Conclusions
A simulation for biogas production from agricultural resources to the upgrading to biomethane was successfully implemented in the proof-of-
concept platform coupling different software for process models and LCA. Further developments will include sensitivity analysis and optimization. 
Regarding the case study, other technologies for upgrading, such as membrane separation will be further considered.

Figure 2.   (A) Process model-based 
Eco-design framework. (B) Emissions by 
processes regarding the Climate Change 
GWP500 from the ReCiPe method V1.13.
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Systematic Planning of Constructing Hydrogen Refueling Stations in Transportation 
Energy Systems with the Case of South Korea
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Abstract: Hydrogen is gaining an increasing attention in the transportation sector. In order to lower its cost, it should be 
available as many places as possible. Hydrogen refueling station (HRS)s should be thus constructed over multiple locations. 
Unfortunately, it is unlikely to do so within a short time because of the heavy financial burden. It is important to develop a 
systematic methodology to construct them in the most efficient manner. This paper thus proposes a decision-making framework 
in a data-based context by using the p-median model. The case of South Korea will be presented to illustrate the applicability of 
the proposed methodology with some comments. Further relevant works would be followed to raise the overall performance 
of hydrogen supply chains with an impact on accelerating the mitigation of the global climate change in the energy systems 
engineering community.
Keywords: hydrogen supply chain, hydrogen refueling station, planning, optimization, p-median model.

Problem description 
This problem is a hydrogen refueling station location selection problem and has an objective function to minimize the sum of the distance between 
the newly installed charging station and the candidate site, including the existing hydrogen refueling station. As a constraint, the maximum 
amount of hydrogen that the charging station can handle per day is 250kg, and the sum of the hydrogen demand at the allocated candidate 
site cannot exceed this. All candidate sites should be allocated to hydrogen refueling stations, and the location of existing hydrogen refueling 
stations should not be allocated to candidate sites for new charging stations. Number of new charging stations shall be P_n (Number of New HRS). 
Assuming that HRS can be operated for 14 hours a day, up to 70 hydrogen cars by assuming that 3 to 5 kg of hydrogen is charged to a car per day. 
The number of charged cars should be reduced when additional shutdown time should be needed to re-pressurize due to the low pressure in the 
storage tank. The construction cost of a HRS varies depending on the charging station's capacity, number of storage tanks, dispensers, hydrogen 
supply method, site, etc., and is estimated from $0.86 M to $11.8 M (Melaina and Penev, 2013). Construction costs are relatively high at 10 to 15 
times the construction cost of the fossil fuel stations currently in operation. Due to the high construction cost of hydrogen refueling stations, it 
is impossible to build hydrogen refueling stations in all the places needed at once to meet the hydrogen demand of hydrogen cars. So the most 
realistic way to achieve maximum effect is to calculate the locations that hydrogen cars need first to use hydrogen refueling stations, and to build 
hydrogen refueling stations according to their priorities within budgetary limits. This is a very difficult problem. 
The hydrogen demand (F) allocated to each candidate site was calculated by multiplying the current number of hydrogen vehicles by the average 
daily travel distance of 40km for drivers in Seoul and dividing the fuel efficiency of Hyundai Nexo vehicles currently distributed in Korea by 96km/
kg. The calculated amount of hydrogen was again allocated by dividing by the number of candidate sites belonging to each region. In the case of 
Korea in 2021, most of the charging stations' facilities are 250kg/day, and if the charging capacity is ideal, up to 70 units per day can be charged 
based on 14 hours of operation. However, considering the failure of charging facilities, the charging of the hydrogen tank through the tube trailer 
is stopped, this paper limited the maximum capacity per day to 250 kg/day (C_max).
In order to calculate the hydrogen demand for Fuel cell electric vehicles(FCEV) in the case study area (Seoul), the number of hydrogen vehicles was 
used to estimate the minimum number of hydrogen refueling stations and hydrogen demand. In the case of Seoul, which was used as an example 
of Case Study, the number of registered FCEVs was 1,972 as of August 2021, and four refueling stations are in operation. Number. The amount of 
hydrogen required per day was calculated by multiplying the number of currently registered FCEVs presented in Table 1 by the average mileage 
per day and dividing it by the standard composite fuel efficiency. The calculated amount of hydrogen was used to calculate the hydrogen demand 
of each node and the number of hydrogen refueling stations required.
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Table 1. Font sizes and styles

Number of 
HRS

Sum of distance between HRS  
and hydrogen demand(m)

Average distance between HRS  
and hydrogen demand(m)

1 2,569,950 4,707

2 2,305,971 4,223

4 1,879,251 3,442

6 1,606,200 2,942

58 1,414,023 2,590

Conclusion
In this study, we proposed the location of a HRS, a new energy source, using an existing fossil fuel gas station as a candidate site. Existing fossil 
fuel vehicle users are those who are likely to use vehicles that use next-generation energy sources in the future. Therefore, the existing gas station 
network can be converted to a hydrogen refuelling network. As of August 2021, there are 546 gas stations in Seoul and 4 hydrogen refuelling 
stations. Based on the current number of FCEVs, the future hydrogen demand was calculated and analysed as 25%, 50%, 100%, 150%, and 200%. 
The number of HRSs to be built in the future was calculated as 1, 2, 4, 6, and 8 locations. As the number of HRSs increased, the average mileage 
when one was built was 4,707 m, but if eight additional stations were built, it decreased by 55% to 2,590 m.  
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Abstract: Perishable raw materials are commonly used in process (agro-food, pharmaceutical) but the quality of these materials 
decrease over time, often over a short period until they become rotten. This issue raises a key concern in supply chain during 
storage, transportation and processing. Indeed, perishable raw materials cause huge amount of waste resulting in economic 
looses and environmental damages due to the increase of natural resource consumption (overproduction). To limit these losses, 
suppliers use quantity discount, but this strategy has also an impact on raw material deterioration due to limited production 
capacity. In this study, we propose a supply chain model dedicated to perishable raw materials with the goal to analyze the impacts 
of quantity discounts on the optimal solution. The capabilities of the model are shown through a real case study concerning the 
tomato supply chain in Ethiopia.
Keywords: Perishable Food Supply Chain (PFSC), Quantity discount and Supply uncertainty.

Introduction 
The current world population of 8 billion and is projected to reach 9.7 billion by 2050 according to a United Nations report, in 2022.This signifies 
an undeniable global challenge requiring integrated food supply chain management. The food industry plays a vast role in making a significant 
contribution to overcoming such a challenge by providing processed food to feed 9.7 billion people within 28 years. In developing countries, such 
as Ethiopia food insecurity has been a severe problem since the 1970s (Brasesco et al., 2019).
Evaluating the configuration of agro-food supply chains is the best strategy to solve the supply chain inefficiencies as well as to enhance its 
sustainability (Barbosa-Povoa et al., 2018). However, most of the operational research focuses on tactical and operational decision levels (Soto-
Silva et al., 2016). One of the recent contributions (Buiki et al., 2020) addressed strategic, tactical, and operational-level decision problems, despite 
the fact that supply-side uncertainty is not considered. Supply chain network resiliency improved by considering the perishability of the product 
after harvest (Kusumastuti et al., 2016). Quantity discount has been used to maintain the uncertainty present in the PFSC. Aside from this, (Liu et 
al., 2021) investigate a single-echelon supply chain considering quantity discount and its influence on the environment without considering the 
cost associated with an increased in processing capacity. Thus, the impact of raw material quantity discount on multi-echelon supply chains and 
its consequent impact on the objective function values and perishability-related issues is not considered so far.
This opens up an opportunity for the modernization of the sector, moving towards efficient supply chain management by creating a link between 
the farmers and agricultural companies. To address the above problems, this study uses decision support tools, MILP that minimize the overall 
costs of PFSC while considering the impact of quantity discount and processing capacity on the overall cost of the supply chain. Thus, increasing 
quantity discount while increasing processing capacity increases the overall cost but there is a need to establish a tradeoff between the cost 
associated with the loss of vegetables due to deterioration and cost increment due to an increase in processing capacity.

Problem statement and Model Formulation
The superstructure of the perishable food supply chain model in this work is depicted in Figure 1. The vegetable obtained from farm locations is 
transported to an inventory facility for preprocessing and handling. When the vegetables arrive at the inventory facility, split into two streams: 
one for packaging fresh vegetables, and the other one to transform them into final products to increase their shelf life. Once fresh vegetables are 
packed, they are directly transported to distribution centers. Part of the vegetable transported to manufacturing centers inventory is processed 
at location i through a process with a specific technology and capacity e for the production of the final product p. The final products could be 
stored at manufacturing centers and/or shipped to distribution centers. The final products that arrive at distribution centers are delivered to the 
customers. The assumptions made to define the problems are: locations of facilities and, their capacities are predefined (set of potential sites and, 
capacities for transformation processes and storages, except for the customers for which the sites are fixed), the demand is fixed, and raw material 
location, availability and perishability are given. Concerning the output data, the model gives: the supply chain network design, the locations and 
capacities of production processes and capacities, inventory levels (both for fresh vegetables and products) and, flows between the different sites.
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The design of the supply chain network also gave attention to constraints and uncertainties which could affect the product’s perishable 
characteristics. As a result, the decision variables are: location and process capacity for each possible site, the quantity of fresh vegetables obtained 
at suppliers, the amount of product produced in each location, shipped quantity between each stage, location and inventory level for each 
storage. The decision variables must respect the following constraints: Vegetable availability, mass balances at each stage both for the fresh 
vegetable and the final products. Aside from this, the model also considers product perishability, the fulfilled demand, capacity constraints and, 
unicity for storage and production process. The objective is aimed to minimize the total annual operating cost. As a result, we obtain a MILP 
problem solved with CPLEX.

Case study, Result and Discussion
The model capabilities were tested with a real case study, i.e. the tomato supply chain in Ethiopia considering the existing production capacity. 
The model for this case study had 2870 constraints and 2354 decision variables.
One of the main results of the optimization is that there is no fresh vegetable and product storage at the manufacturing and distribution centers 
respectively. This solution is very risky because a supply disruption is highly probable. Thus, constraints on a lower bound for storage are added. 
But increasing storage level enhance decay of raw material. To avoid economic losses and to reduce waste due to this deterioration, suppliers 
sometimes use discount to enhance sales of raw material. But quantity discount also causes deterioration of raw materials due to limited 
production capacity (Liu et al., 2021). Thus, there is a tradeoff between profit (increase of OPEX and CAPEX to increase production capacities) and 
waste due to deterioration. Figure 2. shows the impact of processing capacity on the value of objective function considering different upper value 
quantity discounts. The value of the objective function f1 is the cost obtained when the manufacturer bought minimum upper value quantity to 
satisfy the demand. Similarly, the objective function value f2 resulted when the manufacturer bought vegetable at maximum upper value based 
on the available vegetable.
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Figure 2. The impact of processing capacity on objective function 

Conclusion
The suggested model is crucial to use as a platform for decision maker that addresses tradeoff between the added cost due to an increase 
production capacity and loss of food due to deterioration. Further studies of this work will encompass the integration of quality of food product 
and social dimensions.
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